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Abstract. Street networks are important infrastructural transportation systems that cover a great part of
the planet. It is now widely accepted that transportation properties of street networks are better understood
in the interplay between the street network itself and the so-called information or dual network, which
embeds the topology of the street network’s navigation system. In this work, we present a novel robustness
analysis, based on the interaction between the primal and the dual transportation layer for two large
metropolises, London and Chicago, thus considering the structural differences to intentional attacks for
self-organized and planned cities. We elaborate the results through an accurate closeness centrality analysis
in the Euclidean space and in the relationship between primal and dual space. Interestingly enough, we
find that even if the considered planar graphs display very distinct properties, the information space induce
them to converge toward systems which are similar in terms of transportation properties.

1 Introduction

Transportation systems are widely spread in nature, from
biological systems, such as blood circulatory and neural
systems, to ecological ones, such as ant galleries, to hu-
man mobility networks, such as train, air transport net-
works, etc. [1–4]. Within transportation systems, street
networks possibly represent the largest known infrastruc-
tural one [5]. These are growing systems whose main back-
bone is sometimes as old as the human civilization. In
scientific terms, street networks have been considered in
graph theory and statistical physics, where relevant statis-
tical laws such as the Zipf’s law and the Gibrat’s law are
still subject of a wide discussion [6,7], while more recently,
fractal theory applications are bringing new insights into
the nature of these systems [8,9].

In terms of complex systems, the street network it-
self, the so-called primal graph, where the nodes are the
street intersections and the links are the street segments
(see Fig. 1), does not present very interesting topologi-
cal properties, with its Poissonian-like degree distribution.
However, with the recent burst of activity in network the-
ory, a quite interesting approach emerged in the field of
urban studies, which is the study of street networks in
its information or dual space [10]. In such a representa-
tion, the vertices are collections of street segments be-
longing to the same transportation unit, i.e., the same
road, or highway, or motorway, etc., and two vertices are
linked if one ore more segments they represent intersect.
Within this approach, it has been discovered that urban
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Fig. 1. Examples of street network patterns extracted from
the core of a planned city (Chicago in the left panel) and a
self-organized city (London in the right panel).

street networks display interesting properties in terms of
complex systems, i.e., a fat tail connectivity distribution,
which highlights hierarchical and modular behaviour, and
small world properties [11–13]. Such properties explain
how large complex urban textures could be navigated with
just a handful of information. In this sense, it has been
observed that a street network could be seen as an opti-
mization problem tending to minimize the transport effort
both in the Euclidean (also called primal space) and the
information space [14]. It is worth noting that in urban
studies the dual representation is in some way similar or
could be redirected in some extreme limits to space-syntax
analysis [15–18].

Street networks are not the only systems whose func-
tions rely on double layers, where one is physical and the
other one is informational. Between others, an interesting
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example is the brain cortex which shares many similarities
with street networks, as high modularity, fractal structure,
etc. [2]. Written language networks in the same way could
be described by the interplay between syntactic (embed-
ded in the text contiguity representation [19]) and seman-
tic layer (which relates each content word to other texts)
[20]. In the case of street networks, we can rely on a very
accurate knowledge of the primal network (even if the net-
work extraction process is not often straight and different
networks could be derived following scientist necessities or
map biases), and an always better approximation for the
information space.

Only recently, it has been highlighted that in order
to describe street networks, it could be important con-
sidering measures which lie in the interplay between the
Euclidean and the information space [21,22]. In this work,
we perform an analysis of robustness for street networks
in such a spirit, considering the robustness of street net-
works under intentional attacks, where edges in the primal
graph are chosen to be deleted, based on their betweenness
centrality in their dual representation.

Using classical techniques derived from network and
information theory and introducing two novel centrality
measures, we analyse the transportation properties of two
large and important metropolises, London and Chicago.
Such an exercise helps us to shed light on some of the
transportation properties of self-organised and planned
cities (see Fig. 1). Despite the two cities present a consis-
tently different planar morphology, we find that the dual
space is able to drive the two multi-layered systems to
behave in a very similar way in terms of resilience.

2 Results

2.1 Dataset

We consider two large metropolitan area street networks,
namely London and Chicago [23,24]. This choice is based
on the idea of understanding how very different street
networks morphologies could affect the transportation
properties of the system. In this sense, we choose London
as the largest West-European metropolis, and as a repre-
sentative of the so-called self-organized cities, which are
cities with a millenary history and whose street network
grew without a single predominant urbanistic plan [5]. In
order to define London’s boundaries, we choose to consider
the street network comprised in the M25 orbital road1. As
London’s counter part, we choose Chicago as a represen-
tative of planned cities. Chicago is the third largest city
in the USA in terms of population. Chicago’s street net-
work has a relatively short history as it was incorporated

1 Defining city boundaries is still an open debate. Our choice
relates on the fact that we are performing an analysis about
urban transportation properties. In this sense, choosing a nat-
ural definition for city boundaries [25–27] would cut in several
pieces the M25, which is an extremely important orbital road
in order to navigate the city in the information and in the
Euclidean space.

as a city in 1837 and had a rapid expansion in the mid-
nineteenth century, and its urban plan is mostly reticu-
late. In the case of Chicago, given the lack of an entity
such as an orbital road, we consider the urban area sur-
rounding Chicago as defined by the condensation thresh-
old methodology [25].

In order to define the dual representation of these
cities, we employ a hybrid hierarchical methodology. For
motorways, primal and secondary roads, we use the street
name approach [12], while for minor roads we employ the
hierarchical intersection continuity negotiation approach
introduced in [13], which is a sophistication of the inter-
section continuity negotiation introduced in [11].

In Figure 2, we show the resulting dataset. The color
map in the figure represents the betweenness centrality of
the dual representation, as projected on top of the primal
representation. We can appreciate how this measure in the
dual space well reflects the main arteries of both the cities,
and thus reflects the cities main navigational topology.

2.2 Analysis

In Table 1, we show some of the main geometrical and
topological properties of the street networks which are
considered in this research, while in Figure 3 we display
the degree distribution together with its cumulative dis-
tribution for the networks in the information space. As
we can see from the figure, we cannot talk about scale-
free distributions. However, it is worth noticing that we
are considering just artificially delimited sections of wider
street networks. It has already been noticed that consid-
ering the whole networks in the information space, bet-
ter results for scaling are obtained [28]. For us, what it
is important to notice is that we are dealing with broad
distributions characterized by a fat tail. This implies the
presence of hubs and a strong hierarchy in the dual space.
Also, it is important to highlight the value of the diameter
of these networks in the dual space (see Tab. 1), whose
order of magnitude is the same as the logarithm of the
network sizes, thus telling us how such networks display
small world properties in the information space [29]. These
information elucidate the already known fact that the in-
formation space represents a hierarchical complex systems
lying on top of the planar graph [28].

2.2.1 Informational robustness

Exact robustness analytical results are known for random
and preferential attachment topological networks [30].
Planar graphs are always difficult to treat analytically for
the planarity criteria. Nevertheless, empirical study for
street network robustness have been performed, based on
the properties of the primal graph [31], and some anali-
tycal results are known for a few regular lattices in per-
colation theory [32]. However, in order to better under-
stand how a street network reacts to intentional attacks,
we consider the information space as its main topological
characterization, analysing what we call the informational
robustness.
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Fig. 2. The dataset used in this research: in the left panel the London’s street network; in the right panel the Chicago’s street
network. The colour map represents the betweenness centrality as calculated in the dual space and projected on the primal
space.

Table 1. Main geometrical and topological properties of London and Chicago’s street network in their primal and dual repre-
sentation. The number of vertices N , the number of edges E, the average degree 〈k〉, the maximum degree kmax, the topological
diameter Diam, the total network area A, the total street length L, the average street length 〈l〉, the total street length for the
Delaunay triangulation LDelTr, the total street length for the minimum spanning tree of the Delaunay triangulation LMST .

London Primal London Dual Chicago Primal Chicago Dual

N 75 919 34 628 53 882 21 244

E 107 356 68 104 86 944 61 010

〈k〉 2.83 3.93 3.23 5.74

kmax 10 286 9 363

Diam 209 14 289 19

A [km2] 2300 – 1150 –

L [km] 15 016 – 12 294 –

〈l〉 [m] 140 – 141 –

LDelTr [km] 40 143 – 26 923 –

LMST [km] 6479 – 4829 –

In order to perform the informational robustness anal-
ysis, we pick up nodes in the dual graph, with probability
proportional to their betweenness centrality in that space,
where the betweenness centrality for a node k is defined
as the number of shortest paths nij(k) passing through it,
i.e., CBET ≡ ∑

i�=j �=k
nij(k)

nij
. Then, we consider the road in

the primal graph which corresponds to the selected node in
the dual graph and we remove a randomly chosen street
segment from it. Removing such a segment changes the
topology of the dual graph, which is then updated, i.e.,
where the road has been broken, we assign new differ-
ent ids to the two new roads and update the whole net-
work to this regard. Finally, we update the betweenness
centrality for the new dual graph and start the process
again.

The main idea behind the informational robustness is
that important roads, where long distance traffic in cities
happens, and that give small world properties to dual ur-
ban networks, are highlighted with great accuracy by the
betweenness centrality in the dual space (see Fig. 2). If we
want to consider intentional attacks or faults that could
affect greatly urban traffic, then we choose those roads
which have a large value of betweenness centrality in the
dual space.

To better understand the results, we introduce two null
models, an Erdös Rényi planar graph [14] (ERPG here-
after), and a perfect square grid (GRID hereafter) (see
Fig. 4, we built the networks to have 10 000 vertices each).
The ERPG is built to have approximatively the same av-
erage degree of our sample cities and it is worth noticing
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Fig. 3. Degree distribution and complementary cumulative
degree distribution for the dual network of London (left panel)
and Chicago (right panel). The dashed line represents the curve
k−2 and it serves solely as a qualitative eye inspection tool.

Fig. 4. In the left panel an example of ERPG graph with 185
vertices and average degree 〈k〉 = 3.24. In the right panel an
example of GRID with 121 vertices.

that since it does not own a road hierarchy as the anal-
ysed street networks, the dual graph is calculated using
the standard ICN method [11]. The GRID is a classical
square lattice, whose percolation results are known ana-
lytically [32]. Its dual representation consists of a bipartite
graph, where one class of nodes are the vertical roads, and
the second class of nodes are the horizontal roads [14].

Moreover, in order to frame the informational robust-
ness analysis, we compare it to the classical robustness
analysis on the primal representation, which is done by
randomly removing street segments in the planar graph.

In Figure 5, we show the normalized size of the largest
and second largest primal network component 〈S(E%)〉,
averaged over 50 realizations of the process, versus the per-
centage of removed edges E% in the primal network, for
the informational and classical robustness analysis. Fol-
lowing classical percolation theory [32], we localize the
point for the network fracture where we have a steep drop
of the maximum cluster size, associated with a peak for
the second largest component size.

Starting by analysing the classical robustness results in
the primal space, we can see how the GRID is the most ro-
bust network between all the presented cases, with a frac-
ture point around the 50% of edge removal, as expected
from percolation theory. Such a high value for the fracture
point, with respect to the other networks, depends on the
fact that the GRID has a larger number of links, i.e., the
average degree is 4. After the GRID, we find the Chicago

street network, which breaks for E% ≈ 40. This behaves as
expected, given its reticulate structure. At the third place
we find the ERPG, which breaks at E% ≈ 38 and as the
most fragile one, we find London’s street network which
breaks at E% ≈ 27.

The robustness difference between a self-organized city
as London and a planned one as Chicago in the primal
space is striking, but the situation changes greatly when
we calculate the informational robustness. Still the net-
work with the highest robustness is the GRID, which
breaks after 34% of edge removal. We can appreciate any-
way how much the information space, which generates
the navigation routes, could be influential in a disruption
problem. After that, we find the ERPG, which breaks at
E% ≈ 14. Then we find a complete inversion of tendency,
with London at the third place, breaking at E% ≈ 12, and
finally Chicago, whose network breaks at E% ≈ 11.

The highly modular structure of real street networks
in the primal space behaves poorly in terms of robust-
ness compared to random networks, but we have to keep
in mind that cities are transportation systems, so that a
certain degree of fragility is due to ensure best transport
in the interplay between primal and dual space. This is
not surprising as the less fragile system, the GRID, is the
less efficient for transportation in terms of shortest paths
between nodes [14].

In fact, another way to read these results is how much
the hierarchical information network, which lies upon the
primal graph, is influential in the navigation of the system.
Then, we can appreciate how much urban transportation
systems rely on the hierarchical information system for
their functioning. Interestingly enough, we find that even
if London and Chicago are very different in terms of primal
networks, the information space let them converge toward
similar navigation properties, such as a very close fracture
point.

2.2.2 Closeness centrality

To better understand this, we show in Figure 6 the close-
ness centrality analysis for our networks, where the close-
ness centrality for node j is defined as CCL ≡ (N −
1)/

∑
i�=j dij , dij is the Euclidean distance calculated on

the shortest path that connects node i and node j, and N
is the number of nodes. The closeness centrality spectrum
analysis helps us to understand how the primal graph be-
haves locally in terms of transportation efficiency on the
raw street network (in this case the betweenness analy-
sis would give us poor results, since as we have seen the
topology of a street network is mainly delivered by its
information space).

In each panel of the figure, we compare the closeness
centrality distribution P (CCL) of the selected networks,
with the one derived performing a Delaunay triangula-
tion of the network intersections, and the one derived ex-
tracting the minimum spanning tree (MST hereafter) of
the Delaunay triangulation. This comparison will allow us
to speculate about the efficiency of a street network in
the primal space as compared to its fragility, which we
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Fig. 5. Robustness analysis for London (top-left panel), Chicago (top-right panel), ERPG (bottom-left panel) and GRID
(bottom-right panel). Black circles: average maximum cluster size in the informational-robustness analysis; white circles: average
second largest cluster size in the informational-robustness analysis; full line: average maximum cluster size in the classical-
robustness analysis; dashed line: average second largest cluster size in the classical-robustness analysis. Error bars represent the
standard deviation over 50 realizations. The numbers represent the network fracture points.

Fig. 6. Closeness centrality distribution P (CCL), calculated
for the street networks and models, along with the Delaunay
triangulation for their vertices, and the minimum spanning
tree (MST) derived from the Delaunay triangulation: London
(top-left), Chicago (top-right), ERPG (bottom-left), Grid
(bottom-right).

analysed before in the interplay between primal and dual
space.

The Delaunay triangulation is a planar graph connect-
ing all the neighbouring vertices, maximising the mini-
mum angle for all the triangles, thus creating a network

where all the routes are possible between a point and an-
other one. Such a network represents the most efficient
one in terms of travelling in the primal space, at the ex-
penses of the total street network length (see Tab. 1). On
the other hand, the MST is a network which connects all
the street intersections using the minimum number, and
length, of links, and thus represents the less efficient net-
work which connects all the intersections in order to nav-
igate the net in the primal space, but whose total street
network length is minimal (see Tab. 1). We use this ar-
tifice because a direct comparison between the closeness
centrality distribution for the different networks is diffi-
cult to perform, due to the sensitivity of such a measure
to the size of the graph.

First of all, we notice how the distributions P (CCL) for
the real systems are consistently different from the ones of
the models, where after a first high peak the distribution
drops steeply. This behaviour is understood considering
that for the models the closeness centrality follows the
homogeneous geometry of the network, while for the real
systems the highly modular geometry of the street network
ensures a more uneven distribution.

Interestingly enough, we notice how the closeness dis-
tributions for the real urban networks are very close to
Delaunay’s ones, rather than to the MST’s ones. This is
quite impressive if we look at the total length of the net-
works (see Tab. 1). In particular, we could consider the
ratio σ between the total length of the street network and
the total length of its Delaunay triangulation as an intu-
itive measure of the street network efficiency in the primal
space. Such a measure is not sensitive to the size of the net,
as it was shown that the total street length L of a urban
street network is consistent with a linear function of N ,

http://www.epj.org


Page 6 of 8 Eur. Phys. J. B (2016) 89: 53

Fig. 7. Top-left panel: information content distribution P (IC)
for London, Chicago and ERPG. The dashed line is the ex-
ponential fit for the ERPG distribution. Top-right panel: nor-
malized Shannon entropy S(IC) calculated for the information
content distribution for London, Chicago, ERPG and GRID.
Bottom panels: γ probability distribution P (γ) for London,
Chicago and ERPG (left), and ERPG (right).

i.e., L(N) ∝ N [25,33]. Then we find that σLondon ≈ 0.36,
σChicago ≈ 0.46, σERPG ≈ 0.65, σGRID ≈ 0.59. This means
that real street networks, at least the ones we analyse,
perform in terms of efficiency in the primal space in a way
that is very close to the maximum, with a length of the
network that is just around 40% of their Delaunay trian-
gulation. In the same way, we can see also how they are
optimized with respect to the null models, whose σ lies
around the 60% of the Delaunay triangulation.

2.2.3 Information content and informational
closeness centrality

In order to better understand how the information space
affects the navigation in the primal space, first we consider
a simple measure for the information content IC of the
nodes in the dual space, where IC is defined as the number
of street segments belonging to the same node in the dual
space. We expect this measure to give us some informa-
tion on the information organization in the related trans-
port systems. In the left panel of Figure 7, we show the
probability distribution P (IC) for the information content
for London, Chicago and ERPG. The distribution for the
GRID is not shown, since it is trivial, i.e., all the nodes in
the dual space represent the same number of street seg-
ments in the primal space. We can observe how the distri-
butions corresponding to the real networks are skewed in a
log-log plot, revealing a hierarchical organization and the
presence of hubs (notice that since the degree distribution
in the primal space is nearly Poissonian, P (IC) is nearly

equivalent to the degree distribution in the dual space,
see Fig. 3). On the other hand, P (IC) for the ERPG is
well fitted by an exponential function, revealing the lack
of organization.

In the top-right panel of Figure 7, we calculate the nor-
malized Shannon entropy S(IC) for the above mentioned
distributions, i.e., S ≡ −∑

P (IC) ln(P (IC))
N lnN , where N is the

number of vertices in the network. S(IC) is a measure of
the unevenness of the related probability distributions. It
is 0 for the GRID, it is maximum for the ERPG, while we
find the real networks with intermediate values.

Finally, we introduce the informational closeness cen-
trality CInf

CL , another measure lying in the interplay be-
tween primal and dual representation, defined as the close-
ness centrality calculated in the primal graph, where the
paths between the nodes are calculated along the shortest
paths in the dual graph, i.e., CInf

CL ≡ (N − 1)/
∑

i�=j dInf
ij ,

dInf
ij is the shortest Euclidean distance that connects

node i and node j in the primal graph, calculated along
the shortest path connecting node i and j in the dual
space.

The informational closeness centrality is again a ge-
ometrical measure for the efficiency of the primal graph
(how in average a node is distant from all other nodes
of the graph), but incorporating the information driven
by the dual space and we have that for each node
CInf

CL ≥ CCL.
Then, for each node i of the network, the ratio

γi ≡
N−1∑

j dij
− N−1

∑
j dInf

ij

N−1∑
j dij

= 1 −
∑

j dij
∑

j dInf
ij

, (1)

is a measure of the influence of the dual space for the
transportation properties for that node. We have that
0 ≤ γ < 1, where γ = 0 if the shortest paths in the primal
network are equivalent to the ones in the dual network,
which is the case of a grid where all the shortest paths
from a point to another one have the same length as the
path along the shortest path in the dual graph, or as for a
minimum spanning tree, where there is only one shortest
path between each pairs of nodes. Small values for γ mean
that shortest paths in the primal space are closely follow-
ing shortest paths in the dual space, while larger values
for γ represent the opposite behaviour, where the infor-
mation space topological behaviour is more influential in
the street network navigation process.

In the bottom panels of Figure 7, we show P (γ) for
London, Chicago and ERPG. The distribution for the
GRID is trivial, as γ = 0 for each node. In the right panel
we can see that for the ERPG P (γ) is well fitted by a
lognormal distribution. For the real street networks this
is not the case, as we find skewed distributions in a semi-
log plane. In particular we find that for Chicago P (γ) is
broader than it is for London. This means that in aver-
age, in terms of shortest paths connecting different points
in the network, the information space for Chicago is con-
sistently more influential than the London’s one and thus
confirms what we previously find for the informational ro-
bustness analysis.
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3 Conclusions

In this paper we analysed two relevant properties of street
networks, the robustness and the closeness centrality. In
particular, we took as a sample two very large metropolis,
London and Chicago. While London is of Roman origin
and reflects a long line of urban evolution spanning over
two millennia, Chicago is the result of an urban explosion
during the latter half of the nineteenth and the twentieth
centuries. In this sense, our analysis is important to un-
derstand the physical properties of two different urbaniza-
tion processes, the so-called self-organized and the planned
one. Worthless to say, this is a case study and we would
not expect that all planned and self-organised cities be-
have in the same way. Nevertheless important conclusions
could be extrapolated.

Our informational robustness analysis is novel, as it re-
lates to the interplay between the primal and dual space,
understanding the dual space as the main topological
space shaping the street network as a transportation sys-
tem. Its relationship with the classical robustness analysis
allows us for a swift results interpretation. Moreover, by
introducing two null models, the Delaunay triangulation
and the minimum spanning tree, we are able to frame and
give a correct interpretation for the closeness centrality
results. Finally, we are able to interpret the robustness re-
sults by introducing the novel coefficient γ, as the ratio
between the closeness centrality and the novel informa-
tional closeness centrality.

On a first instance, we find that in terms of classical
robustness, London is a strikingly fragile systems, with
respect to Chicago and to the ERPG and GRID models.
Nevertheless, when we calculate the informational robust-
ness, we see that London and Chicago display a very close
fracture point. This result lets us wonder on the fact that
even if in the primal space the networks are very distinct
in terms of morphology and topological properties, the in-
terplay with the dual space creates two systems which are
surprisingly similar in terms of transportation properties
(see also the degree distributions in Fig. 3).

With the closeness distribution analysis, we then show
that the high fragility of the real networks with respect
to the models could be explained by the fact that such
a fragility is required to ensure high performances of the
transportation system. In this sense, we show that the real
primal street networks in consideration perform nearly as
well as their Delaunay triangulation, in terms of their
closeness centrality, with just the 36%–40% of the total
street length of the latter one.

We finally notice, through the informational closeness
analysis, that the dual representation for Chicago’s street
network is more influential than that of London in terms
of street network navigation.

We believe that the results shown in this paper could
be relevant for a better understanding of urban systems.
The similarities we find between so different metropolises
induce us to believe in the existence of common principles
behind the organization of such complex systems. Such
understanding could be helpful both in terms of the study
of self-organizing systems and for urban policy making.

As we noticed in the introduction, street networks are
not the only systems in nature whose properties could
be better understood in the interplay between a physi-
cal and a virtual layer. This induces us to believe that
models of content based networks, such as the one re-
ported in [34], or tensorial representations of multiplex
networks [35] would be of great benefit for a better under-
standing of such phenomena.

APM and CM were partially funded by the MECHANICITY
Project (249393 ERC-2009-AdG). We would like to thank Dr.
Elsa Arcaute for useful discussions and support.
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