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Abstract. We thoroughly investigate the impact of redeposition on the self-organized pattern formation
during ion-beam erosion within the framework of a spatially two-dimensional continuum model. An anal-
ysis on prestructured patterns allows the extraction of general properties of this mechanism, the typical
distribution of redepositing particles and approximations in terms of the surface height in particular. By
combining the redeposition model with erosion models, we present detailed results about the impact of
redeposition on spatio-temporal surface evolutions. It is shown that redeposition can play a decisive role
for pattern formation under ion-beam erosion within an extended range in the parameter space.

1 Introduction

Self-organized pattern formation is ubiquitous in nature
and can be observed on length scales ranging from the
macro- to the nanoscale. For application, in particular
the latter is relevant: when the desired length scale is
below the range of conventional top-down methods, e.g.
lithographic microfabrication, self-organized pattern for-
mation provides a promising bottom-up alternative to cre-
ate structures on the nanoscale [1].

One prime example for this approach is the emer-
gence of well-structured morphologies on ion-beam eroded
surfaces (cf. Refs. [1–4] for reviews). While the first ex-
periments can be dated back to 1962 [5], a new im-
petus was given in 1999, when Facsko et al. discov-
ered the self-organized formation of hexagonally arranged
nanodot structures on semiconductor surfaces by low-
energy ion-beam erosion at normal incidence [6]. Since
then, numerous experiments have been carried out which
can essentially be categorized into three groups: (i) low-
energy erosion of III-V semiconductor compounds [6–11];
(ii) erosion of Ge with heavy ions or ion clusters [12–17]
and (iii) low-energy erosion of Si with additional metal
co-deposition [18–21].

From the theoretical point of view, continuum mod-
els offer a promising approach to gain a coarse-grained
understanding of the physical mechanisms acting on the
eroded surface and their interplay leading to the observed

a e-mail: C.Diddens@tue.nl
b e-mail: slinz@wwu.de

nanopatterns. By expanding the evolution ∂tH of the sur-
face height H(x, t) (with the lateral coordinate x = (x, y))
into lowest order terms that are compatible with the
symmetry, Cuerno and Barabási proposed an isotropic
Kuramoto-Sivashinsky (KSE) equation as minimal model
for normal ion-incidence [22]:

∂tH = a0 + a1∇2H + a2∇4H + a3 (∇H)2 . (1)

Here, the individual terms on the rhs can be interpreted
as follows: while a0 < 0 is the erosion velocity of a com-
pletely flat surface, a2∇4H (with a2 < 0) represents
the smoothing Mullins diffusion [23] and a3 (∇H)2 mod-
els the tilt-dependence of the sputter yield to the low-
est order. The coefficient a1 of the (anti)diffusive term
∇2H has a positive, i.e. smoothing, contribution stemming
from the ballistic mass drift [24] but must also comprise
roughening mechanisms that lead to a in total negative
a1 so that an initially flat surface is destabilized in the
model equation (1). The Bradley-Harper mechanism, i.e.
the curvature-dependence of the erosion rate [25], gives
rise to a term proportional to −∇2H , but also chemical
roughening mechanisms have been proposed [26]. For the
afore-mentioned case (iii), the deflection of approaching
metal atoms constitutes a reasonable roughening mech-
anism since it has be successfully identified in the field
of physical vapor deposition of a thin metallic film on
Si [27–29].

However, it is well-known that the generic solutions of
the Kuramoto-Sivashinsky equation are spatio-temporal
chaotic [30,31] and, hence, the model (1) cannot account
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for the observed self-organized pattern formation. To that
end, a variety of generalizations of equation (1) have been
proposed and investigated [32–43]. The outcome can be
concluded as follows: in order to reproduce hexagonally
arranged dots with a generalized Kuramoto-Sivashinsky
equation, one either has to incorporate a non-local term
or couple in an additional surface composition equa-
tion [36,37]. For the first case, the most simple non-locality
is a linear damping term proportional to the relative sur-
face height H− H̄, where H̄(t) is the surface mean height,
i.e. the spatial height average. Facsko et al. proposed the
inclusion of a linear damping term b(H − H̄) with b < 0
and attributed its physical origin to redeposition, i.e. the
reattachment of previously eroded target particles [33].

While redeposition has been investigated in detail in
the field of focused ion-beam milling [44–48], its impact
on the self-organized pattern formation during ion-beam
erosion has been controversially discussed: Anspach and
Linz concluded based on the results of a discrete solid-on-
solid model that redeposition shares substantial properties
with the damping term [49]. For a more exact model, how-
ever, one has to incorporate higher order terms, in partic-
ular a quadratic damping term c(H − H̄)2, and the coeffi-
cients depend on the aspect ratio of the morphology [50].
In contrast, Bradley argued on the basis of a continuum
model valid for small height gradients that redeposition
cannot give rise to a linear damping term and, therefore,
cannot account for the formation of hexagonally ordered
patterns [51].

In our previous publications, we have performed a de-
tailed analysis of a one-dimensional variant of a contin-
uum model for redeposition [52], which contains the model
of Bradley as a limit, and discussed first results of the
corresponding two-dimensional model [53]. We were able
to clarify that redeposition in fact sets in quadratically
for very flat surfaces, but – with increasing roughness
– a linear damping term and higher order terms with
coefficients depending on the aspect ratio set in. Most
importantly, we were able to show that the undamped
Kuramoto-Sivashinsky equation (1) in combination with
the redeposition model is able to reproduce well-ordered
structures in both one and two dimensions.

The aim of this study is the pending detailed investi-
gation of the physical realistic two-dimensional continuum
model for redeposition that is not confined to small height
gradients. Since this article is quite comprehensive, we
outline its contents in the following: in Section 2 the model
is derived and the ingredients and basic properties are
presented. By considering limiting cases, we additionally
show the connection of our generalized two-dimensional
model to the small-gradient approximation by Bradley [51]
and to our one-dimensional variant [52], respectively.

Subsequently, the effect of pure redeposition on pre-
structured surfaces is analyzed in Section 3. Focusing on
hexagonally ordered patterns, the influence of the sputter
yield and the angular erosion distribution is discussed in
detail. In particular, we demonstrate that the complicated
redeposition model can be approximated by rather simple,
in general non-local, terms of the surface height.

(a) (b)

(c) (d)
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Fig. 1. Derivation of the continuum model for redeposition:
(a) an ion hits the surface at rE and erodes Y (α) particles.
(b) Definition of the local spherical coordinates (θ, ϕ). (c) Cal-
culation of the number of redepositing particles by integrating
Y (α)f(α, θ, ϕ) over dΩ. (d) Integration over all visible surface
areas (white regions).

In Section 4 the redeposition model is finally coupled
with erosion models and the spatio-temporal interplay of
both processes is thoroughly investigated. Substantiated
by a parameter map and by taking a variety of model
combinations into account, we conclude that redeposition
can be a decisive and robust trigger for the emerge of self-
organized pattern formation. Contrary to the argumen-
tation of Bradley [51], this also holds true for the small-
gradient approximation of redeposition.

In Appendix A, the novel elaborate numerical tech-
nique to simulate redeposition on reasonable time scales
is given.

2 Continuum model for redeposition

2.1 Derivation

We start our derivation by separating the spatio-temporal
evolution of the surface height H(x, t) with x = (x, y) into
two contributions:

∂tH = FR[H ] + FE[H ]. (2)

Here, the functional FR describes the height growth due
to pure redeposition, whereas FE comprises all effects that
are caused by erosion and diffusion. Since we are interested
in the impact of pure redeposition for the moment, we
temporarily set FE = 0. The following derivation of our re-
deposition model FR is illustrated in Figure 1. Our model
is a generalization of previous works by Smith et al. [44,45]
and Bradley [51].

In order to obtain the height growth velocity due to
pure redeposition FR, one is interested in the number of
eroded particles that redeposit on an infinitesimal surface
element dAR at rR = (xR, HR) with HR = H(xR, t) per
time. When an ion hits the surface at another position
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rE = (xE, HE) with HE = H(xE, t), the average number of
eroded particles is given by the sputter yield Y (α), where

α = arccos
1√

1 + (∇HE)2
(3)

is the local angle of incidence. For the moment, we ne-
glect the Bradley-Harper effect, i.e. a dependence of Y on
the surface curvature. This influence is investigated later
on in Section 3.5.2. Since the eroded atoms do not leave
the surface isotropically, we introduce the angular erosion
distribution f(α, θ, ϕ) to model preferential erosion direc-
tions. The latter distribution is a function of the angle
of incidence α and of two erosion angles θ and ϕ which
are defined by a local spherical coordinate system at rE.
The polar angle θ ∈ [0, π/2) is defined with respect to the
surface normal

n̂E =
−∇HE + êH√
1 + (∇HE)2

, (4)

whereas the azimuthal angle ϕ ∈ [−π, π] is zero if the
erosion direction coincides with the positive quadrant of
the plane spanned by n̂E and the downhill tangent

t̂E = − ∇HE + (∇HE)2·êH√
(∇HE)2 + (∇HE)4

. (5)

In the case of locally normal incidence, i.e. α = 0, the
tangent t̂E and thereby the angle ϕ cannot be defined.
However, f has to be independent of ϕ under this cir-
cumstances. Since the total number of eroded particles
is already given by the sputter yield Y (α), the function
f(α, θ, ϕ) has to be normalized, i.e.

∫ π/2

0

dθ

∫ π

−π

dϕ sin θ f(α, θ, ϕ) = 1 (6)

has to hold for all α ∈ [0, π/2).
The average number of atoms that are eroded by

the ion impact at rE and redeposit on the surface ele-
ment dAR at rR can be calculated by the integration of
Y (α)f(α, θ, ϕ) over the solid angle dΩ that encloses the
area dAR with the vertex rE. Within this infinitesimal
integration, the erosion angles θ and ϕ are given by:

cos θ =
n̂E ·Δ
‖Δ‖ =

ΔH−Δx·∇HE√[
1+(∇HE)2

]
·
[
(Δx)2+(ΔH)2

] (7)

and

cosϕ =
pE ·̂tE

‖pE‖ , (8)

where Δx = xR − xE, ΔH = HR − HE and pE = Δ −
(n̂E·Δ) n̂E denotes the projection of the direction vector
Δ = (Δx, ΔH) onto the tangential plane of the surface at
rE. With dAR = (−∇HR + êH)d2xR the solid angle can
be written as:

dΩ = −Δ·dAR

‖Δ‖3
= − ΔH − Δx·∇HR

[(Δx)2 + (ΔH)2]3/2
d2xR. (9)

However, the erosion event at rE can only contribute to
the redeposition at rR if the connecting line between these
points is not obstructed by other parts of the surface. To
that end, we introduce the indicator function vH(xR,xE)
for the visibility of both points, i.e. vH(xR,xE) yields 1
if the points are visible with respect to the surface and 0
if the connecting line is obstructed by surface parts lying
in between. Thus, the number of particles eroded by the
impinging ion at rE that redeposit at the surface element
dAR at rR is given by:

vH(xR,xE)Y (α)f(α, θ, ϕ)
Δx·∇HR−ΔH

[(Δx)2+(ΔH)2]3/2
d2xR, (10)

whereby the angles α, θ and ϕ have to be evaluated ac-
cording to equations (3), (7) and (8).

The last step in the derivation of our model is the
generalization of the single ion impact at rE to a homoge-
neous irradiation of the whole surface with a constant ion
flux J (i.e. number of impinging ions per area and time).
This is achieved by taking the surface integral J

∫
d2xE

of equation (10). The height growth velocity due to pure
redeposition FR is finally given by the multiplication with
the volume of a target atom Va:

FR(xR, t) = VaJ

∫
vH(xR,xE)Y (α)f(α, θ, ϕ)

× Δx·∇HR − ΔH

[(Δx)2 + (ΔH)2]3/2
d2xE. (11)

The non-local surface integral (11) constitutes the general
form of our redeposition model which is valid for arbitrary
surface morphologies. In the remainder of this article, we
will analyze FR in detail.

2.2 Model properties

In the following, the intrinsic properties of the redeposi-
tion functional (11) are discussed. We address assumptions
made in the derivation, invariances and symmetries as well
as specific limits and the relation to our one-dimensional
redeposition model [52].

2.2.1 Assumptions

In the derivation, we have implicitly assumed a sticking
coefficient of unity, i.e. that each impinging, previously
eroded particle redeposits on the surface. A stick-or-leave
scenario, i.e. the particle either sticks to it with a given
probability or leaves the surface into the vacuum in the
other case, with a constant sticking coefficient less than 1
can be modeled by multiplying the rhs of (11) with the
latter factor. Within the evolution equation for pure re-
deposition, ∂tH = FR, this corresponds to a rescaling of
time. Although it is basically feasible to generalize our
model to more complicated scenarios, e.g. possibly multi-
ple bounces before the actual redeposition event, it comes
at the cost of a vast increase of complexity. However, in the
framework of the SOS-model it was shown that these gen-
eralizations do not influence the redeposition mechanism
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in a qualitative manner [49]. This result substantiates our
simplification.

Additionally, it was assumed that the time of flight
between an erosion and a redeposition event can be con-
sidered as instantaneously with respect to the surface evo-
lution velocity ∂tH .

2.2.2 The visibility function vH

In the surface integral (11), there is an additional non-
locality within the visibility function vH(xR,xE). With
the definition of the height difference

dH(xR,xE, μ) = μΔH + HE − H((1 − μ)·xE+μ·xR, t)
(12)

between the connecting line of rE and rR and the surface
height beneath, the visibility function can be formally de-
fined by:

vH(xR,xE) =

{
1 if dH(xR,xE, μ) ≥ 0 for all μ ∈ [0, 1]

0 otherwise.
(13)

As it can be seen, vH is symmetric, i.e. vH(xR,xE) =
vH(xE,xR) holds for all xR and xE. This fact is exploited
in the numerical algorithm (cf. Appendix A). Further-
more, dH and thereby vH are invariant under invertible
affine transformations of the lateral coordinate system x.
In particular, a lateral scaling x → sxx of the surface pre-
serves the visibility. The same holds also true for a scaling
H → sHH of the height dimension, however, with the
restriction sH > 0. For sH < 0, dH changes the sign
and, therefore, all previously visible pairs (xR,xE) be-
come invisible, whereas pairs which connecting lines pre-
viously run entirely below the surface turn visible after
the transformation.

2.2.3 Scale invariance

An inherent property of the redeposition model (11) is the
scale invariance with respect to an aspect ratio conserving,
isotropic scaling of the height and lateral extents, i.e.

{x → sx, H → sH} with s > 0. (14)

The angular quantities α, θ and ϕ are preserved, whereas
the scaling dΩ → s−2dΩ is canceled out by the integral∫

d2xE → s2
∫

d2xE. As a result, the same redeposition
FR acts on a small-scale surface as on the isotropically
scaled up equivalent. Within the spatio-temporal evolu-
tion equation for pure redeposition, ∂tH = FR, the time
t has to be scaled by t → st to absorb the scaling factor
in the lhs. Thus, the small-scale surface evolves relatively
faster than the corresponding large-scale one due to the
same absolute redeposition effect. In the SOS-model, the
same scale invariance can be extracted from the numerical
results [50].

On the one hand, the scale invariance simplifies the
analysis of the redeposition effect since, for a given mor-
phology, FR does not directly depend on the surface am-
plitude A and on the characteristic lateral length L (i.e.
dot-to-dot distance), but only on the aspect ratio

ε =
A

L
. (15)

In order to absorb intrinsic height and lateral scales, we
introduce the normalized spatial coordinate x̂ and the nor-
malized relative height ĥ:

x̂ =
x
L

, ĥ =
H − H̄

A
. (16)

On the other hand, the scale invariance constrains sur-
misable approximations of the redeposition mechanism. In
particular, considering a nearly flat surface with a small
relative height h = H−H̄ ≈ 0, one is interested in a linear
approximation of FR, i.e.

FR =
∑
n=0

c2n∇2nh + nonlinear terms. (17)

For constant coefficients c2n, this approximation can only
fulfill the scale invariance if c2n = 0 for all n. Thus, FR

cannot have a universally valid linear portion with con-
stant coefficients. In contrast, there are nonlinear terms
like (∇h)2, h∇2h, . . . that are compatible with the scale
invariance. However, as we have already shown in the in-
vestigation of the one-dimensional variant of the redepo-
sition model, an accurate approximation requires the in-
clusion of a linear damping term proportional to h with
a coefficient depending on the aspect ratio [52]. We will
address this statement over the course of this article.

The scale invariance is violated by the dependence on
the surface curvature when the Bradley-Harper effect is
taken into account. We investigate its influence on the
redeposition mechanism later on in Section 3.5.2.

2.2.4 Small-gradient approximation

If the aspect ratio ε is small, we can approximate FR

for small height gradients. Due to the scale invariance,
we can scale the surface to have a characteristic length
L = 1 followed by a Taylor expansion for small ampli-
tudes A ≈ 0. In this limit, α ≈ 0 and θ ≈ π/2 holds.
Using the symmetry requirements ∂αY (α = 0) = 0 and
∂ϕf(α = 0, θ, ϕ) = 0, one obtains up to the quadratic
order in A:

FR ≈ J Va Y (0)
∫

d2xE vH(xR,xE)
Δx·∇ĥR − Δĥ

‖Δx‖3

×
[
f0·A +

(
fα‖∇ĥE‖ + fθ

Δĥ − Δx·∇ĥE

‖Δx‖

)
·A2

]
.

(18)

Here, ĥR, ĥE and Δĥ correspond to HR, HE and ΔH
normalized by the amplitude A. The erosion distribution
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in tangential direction f0 = f(α = 0, θ = π/2, ϕ) and its
increase fθ = −∂θf(α = 0, θ = π/2, ϕ) for decreasing θ are
independent of ϕ, whereas fα = ∂αf(α = 0, θ = π/2, ϕ)
has to be evaluated at

ϕ ≈ arccos

(
− Δx·∇ĥE

‖Δx‖·‖∇ĥE‖

)
. (19)

Keeping in mind the scale invariance, one can read off
from equation (18) that a linear increase of FR with the
aspect ratio ε ≈ 0 can only be expected if f0 > 0, i.e. if
particles eroded at normal incidence can leave the surface
tangentially. In the case f0 = fα = 0, equation (18) be-
comes the small-gradient redeposition model proposed by
Bradley [51]:

FB
R = J Va Y (0) fθ

∫
d2xE vH(xR,xE)

× [Δx·∇HR − ΔH ] · [ΔH − Δx·∇HE]
‖Δx‖4

. (20)

2.3 Models for Y and f

In the following, we address the models we have used for
the sputter yield Y (α) and the angular erosion distribu-
tion f(α, θ, ϕ). In order to get insight in the influence of
the specific choice of these, we have investigated a variety
of models, ranging from most simple to physical realistic
variants.

2.3.1 Sputter yield Y(α)

To temporarily neglect the influence of the tilt-dependent
sputter yield, Y (α) can be considered as constant, i.e.

Y (α) = Yconst = 1, (21)

where the particular value of Yconst can be changed by
rescaling the resulting FR. In view of equations (18)
and (20), this model remains valid at least at small as-
pect ratios. When the aspect ratio increases, the tilt-
dependence of Y (α) can influence the redeposition effect
FR. To that end, we have used a model proposed by Wei
et al., which is in good agreement with the experimental
data for the sputter yield [54]:

Y (α) = Ytilt(α) = Y0 cos(α) exp
(

sin2(α)
2 cos2(αmax)

)
. (22)

According to experiments [55], we have used the angle of
maximum erosion αmax = 65◦, while

Y0 =
√

π
√

2 erfi
(

1√
2 cos(αmax)

)
cos(αmax)

≈ 0.4210585834,

(23)
was chosen in order to have the same mean value of Yconst

and Ytilt(α) with respect to α.
As already stated, we investigate the influence of the

Bradley-Harper effect separately in Section 3.5.2.

(a) (b)

(c) (d)

fconst fcos θ

fspec fskew

Fig. 2. Different models for the angular erosion distribution
f . The length of the arrows indicate the number of particles
leaving the surface in the indicated direction.

2.3.2 Angular erosion distribution f(α, θ, ϕ)

Similar to Yconst, the most simple model for f is the uni-
form distribution

f(α, θ, ϕ) = fconst =
1
2π

. (24)

The factor 1/(2π) ensures the normalization (cf. Eq. (6)).
fconst leads to an isotropic erosion of particles, in particu-
lar with a non-vanishing contribution in tangential direc-
tion (cf. Fig. 2a).

A physically more realistic model is a cosine-
distribution centered around the local surface normal n̂E

(cf. Fig. 2b):

f(α, θ, ϕ) = fcos θ(θ) =
cos θ

π
. (25)

This model can be considered as an average of the exper-
imentally observed under- and over-cosine distributions,
i.e. f ∝ (cos θ)p with p < 1 or p > 1 [56,57], respectively.
However, for an ion-impact at a slope, α 
= 0, the max-
imum of f can be tilted in downhill direction [58]. This
fact can be taken into account by considering a cosine-
distribution centered around the direction of specular re-
flection of the ion-beam on the surface:

f(α, θ, ϕ) = fspec(α, θ, ϕ) =
2

π· (1 + cosα)
× max (cosα cos θ + sin α sin θ cosϕ, 0) .

(26)

For α > 0, fspec has a non-vanishing erosion distribu-
tion in grazing direction (cf. Fig. 2c). The properties
f(α, θ = π/2, ϕ) = 0 of fcos θ and the enhanced down-
hill contribution of fspec for α > 0 can be combined in a
fourth, probably most physically realistic model

f(α, θ, ϕ) = fskew(α, θ, ϕ) =
cos θ

π
(1 + cosϕ sin θ sin α) .

(27)
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fskew constitutes a cosine-distribution centered around the
normal n̂E which is additionally skewed in downhill direc-
tion (cf. Fig. 2d).

In the following, all four model variants of f are con-
sidered. Thereby, we are able to determine the influence
of the angular erosion distribution on the redeposition
mechanism. With reference to equation (18), we note that
f0 = 1/(2π) 
= 0 and fα = fθ = 0 holds for fconst. Thus, a
linear onset of FR with the aspect ratio ε = A/L can be ex-
pected. Contrarily, f0 = 0 and fθ = 1/π 
= 0 holds for the
other models of f and, therefore, FR quadratically sets in
with ε. The small-gradient approximation by Bradley (20),
however, can only be used for fcos θ and fskew since fspec

does not meet the requirement fα = 0.

2.4 Connection to the one-dimensional variant

In our previous work [52], we have studied a one-
dimensional variant of the redeposition model (11) in de-
tail. In the following we show that the one-dimensional
variant is actually a special case that can be directly de-
rived from the two-dimensional model. By considering a
surface with a translation invariance in y-direction, i.e.
a morphology which is infinitely extended in y-direction
and fulfilling H(x, y, t) = H(x, t), the yE-integral can be
carried out. While the incidence angle α and the visibility
function vH do not depend on yE, the integral of the two-
dimensional angular distribution f(α, θ, ϕ) has to be cal-
culated depending on the specific model. For fconst, fcos θ

and fspec the yE-integration yields exactly the correspond-
ing one-dimensional variant as given in reference [52] for
FR. In the case fskew, however, the corresponding one-
dimensional angular distribution reads

f1d(α, θ1d) =
cos θ1d

2

(
1 +

8
3π

sin α sin θ1d

)
, (28)

which is slightly less tilted in downhill direction in com-
parison to the model for f1d

skew investigated in our one-
dimensional article [52].

Since the one-dimensional variant of FR can be con-
sidered as a limiting case of the two-dimensional model,
all findings discussed in our article [52] can also be inter-
preted as the results stemming from physically realistic
two-dimensional surfaces.

3 Redeposition on static surfaces

We start our analysis of the redeposition model FR by fo-
cusing on pre-patterned, static surfaces. We are interested
in how redeposition is distributed on different morpholo-
gies, especially hexagonally arranged dot and hole pat-
terns. Due to the complexity of the redeposition model
and the entering visibility function in particular, it is un-
likely to find analytical solutions1 or even approximations

1 In the light of Section 2.4 the two analytical solutions from
our one-dimensional investigation [52] can be transferred to the
two-dimensional model.

for FR. Therefore, one is confined to numerical calcula-
tions. An outline of the numerical algorithm is given in
Appendix A.

The morphologies we investigate are given by:

H(x, y) = ±2A

9

(
cos (kx) + 2 cos

(
kx

2

)
cos

(√
3ky

2

))
,

(29)
which corresponds to a perfectly hexagonally arranged ar-
ray of dots (+) and holes (−), respectively. The differ-
ence between maximum and minimum height is given by
the amplitude A, whereas the characteristic lateral length
L, i.e. the dot-to-dot distance, enters equation (29) by
the relation L = 4π/(

√
3k). As already discussed in Sec-

tion 2.2.2, the values of the visibility function vH cannot
be transferred from dots to holes or vice versa. There-
fore, both morphologies have to be treated separately. Fur-
thermore, we start our analysis with the constant model
Yconst for the sputter yield and investigate the impact of
the tilt- and curvature-dependent sputter yield later on in
Section 3.5.

3.1 Redeposition ratio

An interesting quantity is the redeposition ratio

η =
NR

NE
, (30)

where
NE = J

∫
d2xE Y (α) (31)

is the total number of eroded atoms per time and

NR =
1
Va

∫
d2xR FR(xR) (32)

represents the total number of redepositing particles per
time. We start our investigation of the redeposition mech-
anism with the ratio η since, being independent from x,
it is the most simple quantity. η only depends on the as-
pect ratio ε, the morphology (dots/holes) and the specific
models for the sputter yield Y and the angular erosion
distribution f . The redeposition ratio η as function of ε
is shown for the different morphologies and models for f
in Figure 3. As it was expected with a glance at (18), the
fraction of redepositing particles sets in with ε2 for all f -
models except for fconst. For the latter a linear increase of
η with ε can be found. In the limit of high aspect ratios
the redeposition ratio η asymptotically converges to unity
since only particles eroded into straight upward directions
can entirely leave the surface. Due to the pronounced ero-
sion probability towards the valleys, the angular erosion
models fspec and fskew shows higher redeposition ratios η
in this limit. For dots with an aspect ratio of unity, cor-
responding to typical extents of experimental findings on
GaSb [6] and Ge [13], more than 50% of all eroded parti-
cles reattaches to the surface again. Since we have assumed
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Fig. 3. Redeposition ratio FR as function of the aspect ra-
tio ε for the hexagonally arranged dots and holes and for the
different models for f and Yconst.
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Fig. 4. Redeposition FR on hexagonally arranged dot (a) and
hole (b) structures with an aspect ratio of ε = 1, VaJ = 1,
Y = Yconst and f = fskew.

a sticking coefficient of unity, the actual ratio of redepo-
sition might be lower, but these results clearly point out
that the effect of redeposition has to be considered for the
mentioned experimental surfaces.

3.2 Redeposition distribution on the surface

Although the redeposition ratio has already shown funda-
mental features of the redeposition mechanism, it does not
provide any information about the spatial distribution of
the redepositing particles. In Figure 4 two surfaces and the
corresponding color-coded redeposition FR are depicted.
It can be clearly seen that the slopes near the valleys are
subject to maximum redeposition, whereas no particles
reattach at the topmost surface regions. This is a gen-
eral property of redeposition since it can be qualitatively
found independently of the aspect ratio and the specific
model for Y and f . Furthermore, it is apparent from Fig-
ure 4 that FR(xR) can be approximately considered as a
function of the surface height HR instead of xR, although
the function H(x) defined by (29) cannot be inverted to
obtain xR from HR. The validity of the approximative
functional relationship FR(H) will be further discussed in
the following sections.
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Fig. 5. Cross-sectional plots of the normalized surface height
ĥ and the corresponding redeposition FR. Left column: dot
structures. Right column: hole structures. We have set VaJ = 1
and Y = Yconst. The angular erosion distributions are (a,b)
fconst, (c,d) fcos θ, (e,f) fspec, (g,h) fskew. In (f) FR/2 is depicted
for the sake of visibility.

Due to this relation, it is possible to depict the quali-
tative redeposition profile by plotting cross-sections of the
surface and the corresponding redeposition FR instead of
color-coded three-dimensional plots like in Figure 4. These
cross-sectional data is shown in Figure 5 for both inves-
tigated hexagonally arranged morphologies, different as-
pect ratios ε and the considered models for f . The cross-
section for dot structures ranges from one hilltop to an
adjacent one, whereas the same orientation was used for
holes. It is clearly visible that, independently whether dots
or holes are considered, minimum redeposition appears on
the topmost surface areas. Since the chosen cross-section
does not intersect the maximum of H for the holes, a non-
vanishing redeposition FR can be found at xR = ±1/2 in
the right column of Figure 5. The particles redepositing
there stem from erosion positions around the global max-
ima of the surface beside the cross-section area. Most of
the redeposition curves in Figure 5 show a bimodal profile
with a local minimum at the valley surrounded by global
redeposition maxima at the valley-near slopes. Only the
case fspec exhibits a more complicated behavior which is
a result of the strongly preferred erosion into the grazing
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direction towards the valleys. However, in particular for
physically realistic aspect ratios ε � 1, the explicit an-
gular erosion distribution has no considerable qualitative
impact on the redeposition effect. This fact can also be ob-
served in the one-dimensional continuum model [52] and
in the one-dimensional discrete solid-on-solid redeposition
model [49].

3.3 Approximation of FR

Due to its complexity, one is interested in approximations
for the redeposition model (11). However, the presence of
the visibility function vH impedes analytical expansions
of FR. Thus, simple approximations for FR can only be
obtained by analyzing the numerical data of FR by means
of curve fitting or similar methods.

Particularly with regard to the damping term, we
are interested in an approximation of FR in terms of
the normalized relative surface height ĥ. However, be-
sides height differences, there are also gradient terms
that enter the redeposition model FR (cf. Eqs. (3), (7)–
(9)). When curvature-dependent sputtering is neglected,
higher spatial derivatives do not occur in the redeposition
model. Therefore, we include a local gradient term into
our approximation. Since ∇H already fulfills the scale-
invariance, the gradient dependence need not be written
in terms of the normalized quantities. A minimal approx-
imation F app.

R ≈ FR that is able to fit the numerical data
very well is the following:

F app.
R = FR,0 + b̂ĥ + ĉĥ2 +

(
d + p̂ĥ + q̂ĥ2

)
· (∇H)2 . (33)

Each of the coefficients FR,0, b̂, ĉ, d, p̂ and q̂ are func-
tions of the aspect ratio ε and depend on the choice of
f , Y and the specific morphology. Besides a term of ze-
roth order FR,0 and a linear damping term, a quadratic
damping term is considered. The gradient term of lowest
order is weighted with the same functional form as the
non-gradient portion of the approximation. The specific
approximation ansatz (33) will be substantiated in this
section and later on in Section 4.2.

The approximation F app.
R can be written in terms of

the non-normalized height H , i.e.

F app.
R = FR,0 + b

(
H − H̄

)
+ c

(
H − H̄

)2

+
(
d + p

(
H − H̄

)
+ q

(
H − H̄

)2
)
· (∇H)2 ,

(34)

using the relations b = b̂/A, c = ĉ/A2, p = p̂/A and q =
q̂/A2.

In order to obtain the coefficients of (33), we have nu-
merically calculated FR. By arranging the corresponding
triple (ĥ, (∇H)2, FR) in a three-dimensional coordinate
system, the resulting points can be fitted by the approx-
imation (33) via the six fit coefficients. A representative
plot of this procedure is depicted in Figure 6. The approxi-
mation F app.

R resembles the numerical data very well and,

F
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R

num. FR > F app.

R

F app.

R

−0.4
−0.2

0
0.2

0.4
0.6

0.8 0
0.1

0.2
0.3

0.4
0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 6. Numerically determined redeposition FR plotted versus
relative height ĥ and squared slope (∇H)2 (here for hexagonal
dots, ε = 0.25, fskew, Yconst). A least square fit determines
the coefficients of the approximation F app.

R . For the sake of
visibility, the numerical data for FR below and above F app.

R is
indicated by red and green points, respectively.

due to the inclusion of the gradient portion, the coars-
ening of the point data in the valleys is resolved. When
the gradient part in (33) is not considered, the resulting
approximation just in terms of the relative surface height
shows strong deviations from the numerical data. Further-
more, the approximation only with FR,0-, b̂- and ĉ-term is
not able to reproduce the dynamical influence of redepo-
sition in spatio-temporal surface evolution, which will be
discussed later on in Section 4.2.

The approximated coefficients of F app.
R as function of

the aspect ratio ε are depicted in Figure 7 for representa-
tive models for Y and f and for dots and holes. Indepen-
dently of the morphology and the models for the sputter
yield and angular erosion distribution, a negative damp-
ing coefficient b̂ can be found. Thus, redeposition has a
contribution with the functional form of a linear damping
term, but with a coefficient depending on the aspect ra-
tio. b̂ sets in with ε for the case fconst and with ε2 in all
other cases. This result was expected with respect to the
discussion in Section 2.2.4. Similarly, a quadratic damp-
ing term can be observed. The corresponding coefficient ĉ
is positive for the dot structures and also for hole struc-
tures with a small aspect ratio. For hole morphologies with
higher aspect ratios, however, ĉ is negative.

While the coefficient FR,0 does not influence the pat-
tern formation process, a fundamental contribution is
given by the term d(∇H)2. Since the latter is a scale in-
variant quadratic term, it is already present for ε → 0 and
it diverges in this limit for the isotropic erosion distribu-
tion fconst due to the linear onset of redeposition with
the aspect ratio. However, independently of the specific
models and the morphology, a positive coefficient d can
be found. This reflects the fact that tilted regions on pat-
terned surfaces face towards adjacent structures, which
leads to an increased solid angle dΩ and, thereby, to an
enhanced redeposition effect on these areas. The positive
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Fig. 7. Fitted coefficient of (33) as function of ε for the differ-
ent models for f and for hexagonally arranged dots (left col-
umn) and holes (right column) with Y = Yconst. (a,b): fconst,
(c,d): fcos θ, (e,f): fspec, (g,h): fskew.

contribution to the nonlinear term (∇H)2 extends the in-
terpretation of this term in the KS erosion model. We will
discuss this fact later on in Section 4.2.

Besides the discussed coefficients, there are also cor-
rections of higher order, corresponding to the p̂- and q̂-
coefficients, present in the approximation. These start at
ε → 0 with a non-vanishing value (divergence in case of
fconst), whereas the corresponding coefficients tend to zero
in the limit of high aspect ratios. Additionally, the rms
error

RMSE =

(
1√
3L2

∫ √
3L

0

dxR

∫ L

0

dyR

×
[
FR(xR) − F app.

R

(
ĥ(xR), (∇HR)2

)]2
)1/2

(35)

is depicted. Even in the limit of extreme aspect ratios
the deviation RMSE is below 0.1 for all investigated mor-
phologies and angular erosion distributions.

Since the approximation (20) is valid for fcos θ and
fskew, the quadratic onsets of the coefficient curves in Fig-
ure 7 coincide with the small-gradient approximation FB

R

kx

k
y

K0

K1

K2

K3

K4

K5

− 16π√
3

− 8π√
3 0

8π√
3

16π√
3

−8π

−6π

−4π

−2π

0

2π

4π

6π

8π

Fig. 8. Considered spatial Fourier modes in the decomposition
of FR. Besides the DC mode (black) and the basic mode (red),
we have taken quadratic (blue) and cubic (green) couplings
into account.

for ε ≈ 0 in these cases. The numerical values of the cor-
responding coefficients for FB

R are listed in Appendix B.

3.4 Fourier analysis

The coefficients of the approximation F app.
R were deter-

mined by the method of least squares, i.e. by minimizing
RMSE. Another way to get insight into the redeposition
mechanism is the Fourier analysis, focusing on the lower
order harmonics only. Instead of minimizing the residual
RMSE via fit coefficients, the Fourier decomposition gives
exact results for the effect of redeposition on the subspace
spanned by the considered modes, whereas higher harmon-
ics are not taken into account. We investigate FR by the
following Fourier ansatz up to the third harmonics:

FR(x̂R) ≈ FFT
R (x̂R) = F̃0 +

5∑
i=1

F̃i(ε)gi(x̂R)

with gi(x̂R) =
1
2

∑
k∈Ki

exp (ik·x̂R) . (36)

The corresponding wave vectors k are depicted in Fig-
ure 8. The sets Ki = {ki,1, . . . ,ki,Ni} (with i = 0, . . . , 5)
each comprise the modes that have the same amplitude
F̃i due to the symmetry of the surface. The numbers Ni

of amplitudes are N0 = 1 and N5 = 12, whereas Ni = 6
holds for the other cases i = 1, 2, 3, 4.

Using the orthogonality of the Fourier decomposition,
we are able to extract the amplitudes F̃i and, thereby,
the effect of redeposition on the harmonics of the surface
pattern. In Figure 9 the extracted Fourier amplitudes are
depicted as function of the aspect ratio ε and for the dif-
ferent morphologies and models for f . The DC offset F̃0

was omitted, but since the relation F̃0 = η holds for the
choice Yconst, F̃0 can be read off from Figure 3. From the
coefficient F̃1 in Figure 9 it can be seen that redeposition
has a damping effect on the surface base modes. This is
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Fig. 9. Amplitudes of the Fourier decomposition (36) for dots
(left column) and holes (right column) with Y = Yconst. (a,b)
fconst, (c,d) fcos θ, (e,f) fspec, (g,h) fskew.

because ĥ(x̂R) = ±(2/9)g1(x̂R) holds for dots (+) and
holes (−) and F̃1 has the opposite sign in each case.

The coefficients F̃2 and F̃3 belonging to the quadratic
couplings are – with the exception of fspec – always nega-
tive. While the cubic couplings F̃4 and F̃5 are typically
only present at higher aspect ratios, F̃5 is pronounced
with positive values for the models fcos θ or fskew on dot
morphologies. Furthermore, these configurations exhibit
a much higher deviation RMSE (defined analogously to
Eq. (35) with F app.

R substituted by FFT
R ) than the other

ones. This means that there are nonlinearities of fourth
or higher order present in FR which are not considered by
the ansatz (36).

We have also investigated the small-gradient approxi-
mation FB

R (cf. Eq. (20)) by means of Fourier decomposi-
tion. The corresponding coefficients, which also resemble
the quadratic increases for fcos θ or fskew at ε ≈ 0, can be
found in Appendix B.

3.5 Influence of the sputter yield

For simplicity we have chosen the model Yconst up to here.
A more physical realistic investigation of the redeposition
mechanism has to consider two characteristics of the sput-
ter yield, namely the tilt- and the curvature-dependence
of Y .
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Fig. 10. Same as Figure 5, but for the tilt-dependent sputter
yield Ytilt.

3.5.1 Tilt-dependent sputter yield

For the tilt-dependence we use the model Ytilt (cf.
Eq. (22)). Analogously to Figure 5, cross-sections of the
surface and the corresponding redeposition FR are de-
picted in Figure 10. As expected from the small-gradient
expansion (18), the tilt-dependence of Y has no impact
for small aspect ratios. Since Y0 < 1 = Yconst was cho-
sen, the curves in Figure 10 for ε = 0.25 are below the
corresponding ones in Figure 5, but the qualitative shape
is exactly the same. With increasing ε, however, the tilt-
dependence of the sputter yield has a visible effect on FR:
on the one hand, the enhanced erosion at the slopes leads
to an increase of the overall redeposition and, on the other
hand, the shape of the cross-sectional curves is altered for
extreme high aspect ratios. In particular, there are addi-
tional local maxima of FR at slopes near the hilltops of the
hexagonal hole morphologies, which can be understood as
follows: as we will see later on in Section 3.6, the rede-
positing particles for high aspect ratios stem from erosion
events taking place at approximately the same height, i.e.
ĥR ≈ ĥE. Since Ytilt has its maximum at slopes with an
angle of αmax, these surface regions are subject to max-
imum redeposition with particles stemming from erosion
at the opposing slopes.

For extremely high aspect ratios the entire redeposi-
tion profiles are diminished due to the decrease of Ytilt for
α → π/2.
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Fig. 11. Same as Figure 7, but for the tilt-dependent sputter
yield Ytilt.

The graphs of the corresponding fit coefficients in Fig-
ure 11 show in comparison with those with Yconst in Fig-
ure 7 the following main differences: Again, b̂ < 0 holds
for all configurations, but ĉ can now become negative for
small ε on hill structures. The curves of the coefficient d
now show a maximum at around ε ≈ 0.5 which can be
attributed to the increase of Ytilt(α) for moderate α.

In particular for physically reasonable aspect ratios,
however, the tilt-dependence of the sputter yield has only
a quantitative impact on the redeposition mechanism.

3.5.2 Curvature-dependence of Y

Due to the Bradley-Harper effect, the sputter yield Y also
depends on the local surface curvature K, which can be
approximated by the Laplacian K = ∇2H . This depen-
dency breaks the scale invariance (14) for the sputter yield
and, thereby, also for the redeposition FR. However, to the
lowest order, the Bradley-Harper mechanism can be writ-
ten by decomposing

Y (α, K) = Y (α) + Γ (φ)·K. (37)

Here, the first term on the rhs comprises the pure incident
angle portion of Y , whereas the second addend models

the Bradley-Harper mechanism. Strictly speaking, Γ is a
function of the incidence angle α as well, but it is typically
evaluated at the global incidence angle φ [22,25], which is
φ = 0◦ for normal incidence. We have set Γ = 1 in the
following. With the decomposition (37), the redeposition
can be expressed in the same manner:

FR = equation (11) + Γ (φ)·FK
R (38)

with the curvature portion of the redeposition mechanism

FK
R = JVa

∫
d2xE vH(xR,xE)

(∇2HE

)
f(α, θ, ϕ)

× Δx·∇HR − ΔH

[(Δx)2 + (ΔH)2]3/2
. (39)

The latter resembles the functional form of (11) with Y (α)
exchanged by (∇2HE). Contrarily to the entire redeposi-
tion FR, the curvature-dependent portion FK

R can also
be negative. Furthermore, when keeping the aspect ratio
ε = A/L constant, FK

R is inversely proportional to both
A and L, respectively.

In order to provide results that are independent of the
amplitude A and the characteristic length L, FK

R (x̂R)·A
or FK

R (x̂R)·L are good quantities to be plotted. In Fig-
ure 12, FK

R (x̂R)·L/ε is depicted, where the division by ε
was performed for the sake of visibility. The curvature-
dependence of the sputter yield enhances the redeposition
in the valley regions, whereas the hilltops are subject to a
reduced amount of redepositing particles. With increasing
aspect ratio, FK

R takes on values that exceed the ones of
the curvature-independent portion by far. However, from
the physical point of view, the total sputter yield (37) may
not become negative anywhere on the surface. Thus, for
surfaces with higher curvatures, the choice of the coeffi-
cient Γ = 1 can be too large.

We can perform an analogous fit procedure for FK
R by

choosing the approximation

FK
R ≈ FK,app.

R = FK
R,0 + b̂K ĥ + ĉK ĥ2

+
(
dK + p̂K ĥ + q̂K ĥ2

)
· (∇H)2 . (40)

The resulting coefficient graphs are plotted in Figure 13.
Since b̂K < 0 holds, the Bradley-Harper effect enhances
the damping effect of the redeposition mechanism on the
surface basic mode, whereas ĉK is positive for all config-
urations. The results are similar to our one-dimensional
investigation of the redeposition mechanism [52].

3.6 Erosive origin of redepositing particles

Hitherto, we have extracted a lot of information regarding
the redeposition distribution on the surface. However, we
have not investigated the origin of the redepositing parti-
cles yet, i.e. their position of erosion xE, where they have
left the surface before reattaching to it again at xR. In
order to provide presentable information about the ero-
sion distribution, we express the vectorial coordinates xR
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Fig. 12. Cross-sectional plots of the curvature-dependent por-
tion FK

R for dots (left column) and holes (right column). (a,b)
fconst, (c,d) fcos θ, (e,f) fspec, (g,h) fskew.

and xE by averaged scalar quantities. The positions of
redeposition xR are once more expressed by the normal-
ized height ĥR and, instead of xE, we are more interested
in the distribution with respect to the normalized lateral
distance

D̂ER =
‖xE − xR‖

L
= ‖x̂E − x̂R‖ (41)

between the erosion event and the redeposition event. We
can obtain the distribution ρD̂(ĥR, D̂ER)dĥRdD̂ER of par-
ticles that redeposit on a height interval between ĥR and
ĥR + dĥR after being eroded in a normalized distance be-
tween D̂ER and D̂ER + dD̂ER by the relation:

ρD̂

(
ĥR, D̂ER

)
=

JVa

Nĥ(ĥR)

∫
d2xR

∫
d2xE vH(xR,xE)

× Y (α)f(α, θ, ϕ)
Δx·∇HR − ΔH

[(Δx)2 + (ΔH)2]3/2

× δ

(
H(xR)

A
− ĥR

)

× δ

(‖xE − xR‖
L

− D̂ER

)
. (42)
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Fig. 13. Corresponding fit coefficients for FK
R . Parameters as

in Figure 12.

Here, ĥR and D̂ER have to be considered now as indepen-
dent variables and δ is the Dirac delta function. We have
normalized the distribution ρD̂ by the factor

Nĥ

(
ĥR

)
=

∫
d2xR δ

(
H(xR)

A
− ĥR

)
(43)

to cancel out the length of the level curve at the considered
height ĥR.

The erosion distance distribution ρD̂ is depicted in Fig-
ure 14 with the parameters Ytilt and fskew. The maximum
of ρD̂ is always located within the range D̂ER < 1. Thus,
most of the redepositing particles were eroded within the
real distance of a characteristic lateral length L. While in
the valleys (negative ĥR) the maximum contribution stems
from the erosion at positions in close vicinity (D̂ER ≈ 0) of
the redeposition event, it is apparent that on hilltops (pos-
itive ĥR) the redepositing particles were eroded on the fac-
ing areas of the adjacent structures (0.25 � D̂ER < 1). A
fundamental difference between the hexagonally arranged
dot patterns (left column) and the corresponding hole
patterns (right column) is the contribution of particles
eroded at distant regions of the surface. On the dot mor-
phology, erosion at structures in a distance of up to four
dot-to-dot-distances L can have an effect on the redepo-
sition. In contrast, the maximum range between erosion
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Fig. 14. Distance distribution ρD̂ between the positions of
erosion and redeposition for Ytilt, fskew on a dot (left column)
and hole pattern (right column), respectively. The aspect ratio
ε is (a,b) 0.25, (c,d) 0.5, (e,f) 1.0, (g,h) 2.0.

and redeposition is almost entirely trapped within each
single well of the hole structures. An increase of the as-
pect ratio does not alter the characteristics of ρD̂, except
that the global maximum of ρD̂ is shifted more to erosion
and redeposition in the same valley, i.e. minimal ĥR and
D̂ER ≈ 0.

We can also investigate the distribution in terms of the
erosion height ĥE by defining analogously to equation (42)
the distribution

ρĥ

(
ĥR, ĥE

)
=

JVa

Nĥ(ĥR)

∫
d2xR

∫
d2xE vH(xR,xE)

× Y (α)f(α, θ, ϕ)
Δx·∇HR − ΔH

[(Δx)2 + (ΔH)2]3/2

× δ

(
H(xR)

A
− ĥR

)
·δ

(
H(xE)

A
− ĥE

)
.

(44)

In Figure 15, it can be read off from the plotted data for
ρĥ that for small aspect ratios the redeposition at almost
every height ĥR is constituted by erosion events happen-
ing at almost the whole range of erosion heights ĥE. Only
particles eroded in the close vicinity of the surface height
maxima (ĥE = max) do not contribute to the redeposi-
tion. Similarly, particles eroded at the lowest regions of
the surface (ĥE = min) cannot reach the highest parts of
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ĥRĥR

ĥ
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ĥ
E

ĥ
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ĥ
=

4
.2

8

-2/3

-1/3

0

ρ
m

a
x

ĥ
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Fig. 15. Erosion and redeposition height distribution ρĥ be-
tween the positions of erosion and redeposition for Ytilt, fskew

on a dot (left column) and hole pattern (right column), re-
spectively. The aspect ratio ε is (a,b) 0.25, (c,d) 0.5, (e,f) 1.0,
(g,h) 2.0.

the surface for redeposition (ĥR = max). With increasing
aspect ratio, the distribution ρĥ focuses around the line
ĥE = ĥR. This behavior can be understood by taking the
limit of high aspect ratios: if ĥE differs from ĥR, the influ-
ence of the non-normalized height difference ΔH becomes
large within the distance vector Δ. This leads a vanishing
solid angle dΩ (cf. Eq. (9)) and thereby to a small redepo-
sition contribution. Furthermore, it can be seen that the
global maximum of ρĥ moves to the valleys for high aspect
ratios, just as we have noticed it in the previous discussion
of the distribution ρD̂.

4 Spatio-temporal evolution with redeposition

In our letter [53], we have already briefly reported the
pattern-stabilizing effect that redeposition can have in
combination with erosion. Here, we will present a thor-
ough investigation of this effect by discussing different
parameter combinations, a stability map as well as the
interplay with other erosion models besides the Kuramoto-
Sivashinsky equation.

With the redeposition model (11) substituted in the
general height evolution (2), we only have to specify the
erosion model FE. Since it is the minimal model, i.e.
the one with the lowest number of parameters, we use
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the Kuramoto-Sivashinsky equation

FE = a0 + a1∇2H + a2∇4H + a3 (∇H)2 (45)

as erosion model for the moment. By combining FE with
FR, transforming into the coordinate system co-moving
with a0 and rescaling the resulting equation by:

x →
√

a2

a1
x, H →

√
a2

a1
H, t → −a2

a2
1

t,

β = VaJ

√
a2

a3
1

and κ = a3

√
a2

a3
1

, (46)

the model reads

∂tH = βFR −∇2H −∇4H + κ (∇H)2 . (47)

Here, we have neglected the influence of the Bradley-
Harper effect within FR to take advantage of the scale-
invariance. Additionally, we have assumed a1 < 0, corre-
sponding to a roughening instability of the flat surface,
and a2 < 0, i.e. a Mullins diffusion that counteracts the
instability at large wave numbers. Since the factor VaJ has
now be included to the parameter β, it has to be set to
unity within FR in the combined evolution equation (47).

4.1 Influence of redeposition on the pattern formation

We start our analysis of the combined model equation (47)
by discussing representative simulation results for specific
parameters. Since the models Ytilt and fskew are the most
physical ones, we will primarily focus on these. However,
we will also address some other model combinations later
on. The left column of Figure 16 shows the evolution of
an initially almost flat surface subject to the combined
erosion and redeposition according to the model equa-
tion (47) with2 β = 2.0 and κ = −0.4. At early times
of the evolution, the linear portion −(∇2 + ∇4)H in the
model equation leads to a growth of lateral Fourier modes
with wave numbers k between 0 < k < 1. Then, with in-
creasing roughening, redeposition and the κ-nonlinearity
set in, the roughening saturates and a more and more or-
dered hexagonally arranged dot pattern organizes on the
surface. The remaining defects dissolve for longer simula-
tion times and the surface converges to a perfect hexago-
nal arrangement. Besides the qualitative similarity of the
resulting pattern in comparison with experimentally ob-
served dot morphologies, we can also notice a quantita-
tive agreement: the aspect ratio has a value of ε = 0.76
(A = 6.62 and L = 8.74) and is therefore comparable to
the dot morphologies found on binary compounds [6–11]
and by irradiation with heavy Bi-(cluster)-ions [12–17].
Since we had to use the same scales for ĥ and x in (46),
the aspect ratio is a characteristic quantity of the model

2 These parameters are exactly the same as in our letter [53],
but here we discuss the results in more detail. Minor deviations
in the results are the consequence of different random pertur-
bations of the initially almost flat surface.
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Fig. 16. (a) Evolution of the combined model equation (47)
with Ytilt, fskew, β = 2.0 and κ = −0.4. (b) Same parameters,
but without redeposition, i.e. β = 0. (c) With redeposition,
same parameters as in (a), but starting from a chaotic initial
surface. The insets show the corresponding PSDs.

equation (47), which cannot be adjusted by rescaling the
height or the lateral extent. The redeposition FR shows
again the typical distribution on the surface, i.e. no rede-
position on hills and maximum redeposition on the slopes
near the valley.

The well-ordered structures are triggered by redepo-
sition within the model equation (47). This is strikingly
apparent by the comparison with the evolution shown in
Figure 16b. Here, a simulation run based on the same
initial surface and parameters, except without redepo-
sition (i.e. β = 0), is shown. Instead of ordered struc-
tures, spatio-temporally chaotic dynamics exhibit in the
nonlinear regime of the surface evolution, which is the
generic solution of the undamped Kuramoto-Sivashinsky
equation [31].

The stabilization of patterns due to redeposition is
quite a robust effect. This can be seen from Figure 16c,
where we have used the chaotic surface from the bot-
tom of the middle column as initial surface. Although a
more complicated surface morphology is present in the
upper picture of the right column now, redeposition is
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Fig. 17. (a) Evolution with Yconst, fcos θ, β = 5.5 and κ =
−1.0. (b) Evolution with the small-gradient approximation
FR = FB

R , β = 3.5 and κ = −1.0.

again predominantly present at the slopes in the vicin-
ity of the valleys, whereas almost no particles reattach at
the top regions of the rugged ridges. During the spatio-
temporal evolution of this initial surface, the rough mor-
phology smoothens and hills emerge, which assemble again
to a highly regular hexagonal dot pattern (A = 6.18 and
L = 8.71). Thus, the interplay of erosion and redeposition
is even able to create well-ordered structures starting with
non-trivial and rough initial surfaces.

Moreover, it is not necessary to use the models Ytilt

and fskew. As a representative example, we have depicted
the surface evolution with the models Yconst, fcos θ and the
parameters β = 5.5 and κ = −1.0 in Figure 17a. Again,
the surface converges to a hexagonal arrangement of dot
structures (A = 4.66, L = 8.92) and shows the typical
redeposition distribution.

The pattern formation can also be observed when the
full redeposition model FR in the combined model equa-
tion (47) is replaced by the small-gradient approximation
FB

R . This is shown in Figure 17b, where we have used
β = 3.5, κ = −1.0 and JVaY (0) = 1 and fϕ = 1/π
within FB

R . We conclude that, even though redeposition
sets in quadratically with increasing roughness on shallow
surfaces, this non-local effect can have a robustly pattern-
forming impact on the Kuramoto-Sivashinsky equation.

4.2 Approximation in terms of the surface height

In this section, we want to connect the spatio-temporal
dynamics from the previous section to the approxima-
tion (33) discussed in Section 3.3. Since the amplitude
A is hard to define on irregular surfaces, we will use the
non-normalized ansatz (34). Moreover, we include the pa-
rameter β into the coefficients, i.e. we fit βFR via

βFR ≈ βF app.
R = F ′

R,0 + b′(H−H̄) + c′(H−H̄)2

+ (∇H)2 ·
(
d′ + p′(H−H̄) + q′(H−H̄)2

)
. (48)
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Fig. 18. (a) Temporal evolution of the fit coefficients for the
simulation depicted in Figure 16a. Additional, the roughness w
of Figure 16b is shown. (b) Coefficient curves for the evolution
of Figure 16c.

By performing the fit procedure described in Section 3.3
in every time step, we are able to extract the temporal
evolution of the fit coefficients. Based on the surface evo-
lution of Figure 16a, we have depicted the corresponding
coefficients in Figure 18a. For early times t < 50, the co-
efficients vary in time. The coefficients F ′

R,0, b′ and c′ are
close to zero for the shallow surface and set in with increas-
ing surface height modulations. The latter are measured
here by the rms roughness w, which is also depicted in
the graph. For comparison, also the roughness evolution
of the spatio-temporal chaotic run of Figure 16b is shown.
The coefficients p′ and q′ are subject to extreme changes
during the initial transient time. This behavior can be at-
tributed to the fact that FR has a quadratic onset with
increasing surface roughness, whereas the fit terms corre-
sponding to these fit coefficients are functions of higher
powers of H − H̄ . During the fit, the difference in the
powers has to be compensated by p′ and q′, respectively.
Although the surface is relatively flat at initial times, the
fit error RMSE increases to its maximum in this regime.
The fit F app.

R deviates here from FR due to the irregular-
ity of the surface. However, after the transient time, when
the roughness begins to saturate and structures begin to
arrange, all fit coefficients take on nearly constant values
and RMSE decreases again.

We have depicted the curves corresponding to the sim-
ulation from Figure 16c in Figure 18b, where basically the
same facts can be observed. The converged coefficients can
be read off at t = 1000:

F ′
R,0 = 0.654, b′ = −0.143, c′ = −0.003,

d′ = 0.430, p′ = −0.105, q′ = 0.019. (49)

http://www.epj.org


Page 16 of 22 Eur. Phys. J. B (2015) 88: 190

t = 50 t = 250 t = 1000

(F app.
R − F app.,min

R )/(F app.,max
R − F app.,min

R )

0.63
0.68

−0.24
3.02

−0.40
3.20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 19. Evolution of the approximative equation (52) with
constant parameters according to (49). The values in the
lower right of the pictures are βF app.,min

R and βF app.,max
R ,

i.e. maximum and minimum of the color-coded approximated
redeposition.

Using the relations

F ′
R,0 = βFR,0, b′ = βb̂/A, c′ = βĉ/A2,

d′ = βd, p′ = βp̂/A, q′ = βq̂/A2, (50)

we can compare these with the ones stemming from the
static analysis in Section 3. From corresponding data of
Figure 11e, we can determine:

F ′
R,0 = 0.728, b′ = − 0.129, c′ = − 0.009,

d′ = 0.413, p′ = − 0.115, q′ = 0.023. (51)

Thus, the static analysis of FR can be used as a good
estimation for the coefficients that are present in the
spatio-temporal dynamic simulation after the transient
time. Minor deviations between the results (50) and (51)
can be ascribed to different lateral discretizations (cf. Ap-
pendix A). Furthermore, due to the presence of κ(∇H)2
and FR, the emerged hexagonal pattern does not need to
exactly match the static prestructure (29).

The utility of the approximation FR ≈ F app.
R is elu-

cidated by substituting it into the model equation (47),
i.e.

∂tH = F ′
R,0 + b′

(
H−H̄

)
+ c′

(
H−H̄

)2

+
(
d′ + p′

(
H−H̄

)
+ q′

(
H−H̄

)2
)
· (∇H)2

−∇2H −∇4H + κ (∇H)2 . (52)

Accepting deviations in the transient regime at initial
times, we can use the converged values (49) as constant
coefficients. The resulting evolution is depicted in Fig-
ure 19. As expected, the approximative model (52) does
not show exactly the same evolution as the full rede-
position model (47), but the converged hexagonally ar-
ranged dot structures are comparable with respect to lat-
eral and height extents. The redeposition approximation
F app.

R shows a very similar distribution on the surface as
the full model FR. In the light of these results, the purpose
of the approximation F app.

R is emphasized due to its abil-
ity to produce comparable results even in spatio-temporal
dynamic simulations.

Of course, the incorporation of F app.
R into the model

leads to a vast number of coefficients in combination with

the Kuramoto-Sivashinsky equation by what it cannot
be considered as minimal model anymore. However, the
derivation of the Kuramoto-Sivashinsky equation as ero-
sion model is typically achieved by a systematic expansion
in terms compatible with the symmetries to the lowest
order [22,38,59]. If F app.

R is truncated at the quadratic
order in the height H , corresponding to the minimal
(∇H)2-term, one is left with the linearly and quadrati-
cally damped Kuramoto-Sivashinsky equation:

∂tH = F ′
R,0 + b′(H−H̄) + c′(H−H̄)2

−∇2H −∇4H + (d′ + κ) (∇H)2 . (53)

With a glance at the extracted coefficients (49), we no-
tice that the quadratic damping term contributes only
marginally to the evolution in this case. Moreover, as an
important result, we conclude that d′ + κ > 0, i.e. the
(∇H)2-term has positive sign. This fact clarifies an is-
sue the damped KSE-model had to struggle with: while
the pure erosive mechanism corresponding to this term –
the enhanced sputter yield on slopes – necessitates a neg-
ative sign, the formation of hexagonal dot structures can
only be found for positive coefficients. The extended inter-
pretation of this term, now consisting of a negative con-
tribution stemming from erosion (κ < 0) and a positive
addend d′ > −κ caused by redeposition, is able to resolve
this discrepancy. The simulation of (53) with the coef-
ficients (49) leads to hexagonal dot structures, however,
with an amplitude A exceeding the ones of Figures 16a
and 16c or Figure 19 by one order of magnitude. Due to
the small moduli of the coefficients c and κ + d′ and the
neglection of the terms of higher order, the saturation sets
in at later times and at a higher roughness. However, it
is also questionable if it is sufficient to expand the erosion
model only up to the quadratic order in H . In particular
for structures with an aspect ratio of ε ≈ 1, terms of higher
order could have a massive impact on the evolution. Keep-
ing that in mind, the ability of (53) to produce hexagonal
ordered dot patterns with the coefficients (49) by itself
substantiates the model of the linearly (and quadratically)
damped Kuramoto-Sivashinsky equation. We investigate a
local variant of (53) in reference [43].

4.3 Parameter map

The representative discussion of single simulations of the
full model (47) is definitely fruitful, but a systematic inves-
tigation of the model equation (47) has also to include the
dependency of typical solutions on the parameters. This
issue will be addressed this section. Due to the numerical
effort for a single simulation (cf. Appendix A), we restrict
our discussion here to Ytilt, fskew and the parameter re-
gions 0 ≤ β ≤ 5 and −1 ≤ κ ≤ 1. In a first step, slightly
perturbed hexagonally arranged dot and hole structure ac-
cording to (29) were used as initial surfaces for simulations
of (47) with β and κ in the afore-mentioned range. This
procedure gives insight into the stability of prestructured
surfaces as function of the parameters. The second step
involves the same parameter scan starting with a slightly
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Fig. 20. Parameter map for Ytilt and fskew and some represen-
tative final surfaces evolved from a flat surface (captions are
(β, κ)).

perturbed flat initial surface. Thereby, we were able to in-
vestigate for which (β, κ) self-organized pattern formation
can be observed.

After a simulation time of t = 1000, we have deter-
mined the actual present final surface. The actual sur-
face morphology was classified by a combination of sev-
eral indicators: the evolution of the surface roughness
w(t) was checked for convergence. In the case of a non-
trivial temporal behavior, we have also applied the 0-1-test
for chaos [60] to distinguish between (quasi-)periodic and
chaotic evolutions. Furthermore, the arrangement of the
dominant modes in the PSD was investigated and, finally,
we have connected the adjacent hilltops or valley centers
by a net in the position space and analyzed its symmetry
and regularity. In total, this method gives consistent re-
sults which coincide with a morphology classification made
by eye.

The resulting parameter map is depicted in Figure 20a.
Chaotic behavior can be found in large regions of the pa-
rameter space (red). Neither pattern formation can be ob-
served within these areas, nor are there prestructured pat-
terns stable. Besides the typical chaos of the undamped
KSE, quite different chaotic solutions have been found.
At β = 4.0 and κ = −0.1, for instance, isolated hogbacks
can be observed (cf. Fig. 20f). Although a prestructured
dot pattern is stable for the parameters of Figure 20b, a
self-organized emergence of this structure cannot be found
(indicated by blue regions in Fig. 20a). Similarly, the hole
structures in Figure 20c do not assemble to a hexagonal
formation, but a prestructured hole pattern is stable here
(cyan regions).

Self-organized pattern formation can be observed in
the green region. The corresponding patterns are all
hexagonally arranged dot morphologies (cf. Fig. 20d) with
aspect ratios ranging from ε = 0.51 at (β, κ) = (4.2,−0.8)
to ε = 1.38 at (2.3,−0.3). The region of pattern formation
is surrounded by a blue border in which only prestructured
dot structures are stable. However, it can also be possi-

ble that the slightly hexagonal morphology in Figure 20e
converges to a pattern for longer simulation times.

We can conclude by the extent of the green region of
the parameter map that the pattern formation discussed
in section 4.1 is a generic feature of the combined re-
deposition and erosion model (47). The resulting aspect
ratios are in the same order as the experiments on bi-
nary compounds [6–11] and Ge irradiated by Bi-(cluster)-
ions [12–17]. Additionally, the negative sign of κ is com-
patible with the physical interpretation of this parameter.
However, we have not seen self-organized formation of hole
patterns yet. This could be an effect of the limited redepo-
sition range, which has been discussed in Section 3.6: the
confinement of redeposition to each individual hole does
not give rise to long-range interactions between the holes
and could be the reason for the absence of a long-range
ordering. However, an extension of the considered param-
eter range or a different choice for Y or f could also be
able to give rise to the formation of well-arranged hole
morphologies.

4.4 Combination with other erosion models

In a last step, we are interested if the pattern formation
induced by redeposition can also be observed in combi-
nation with other erosion models. Recently, Bradley and
Shipman proposed a erosion model (BS-model) for binary
compounds, where the dynamics of the surface height H is
coupled with a composition field φ [36,37]. Although this
model is able to reproduce patterns without considering
redeposition, we investigate briefly the influence of rede-
position in this erosion model. For simplicity, we neglect
the fact that the redepositing particles will also affect the
composition field φ. The resulting combined model can be
written as:

∂t

(
H

φ

)
=

(
a1∇2 + a2∇4 b

c∇2 d0 + d1∇2

)
·
(

H

φ

)

+

(
a3 (∇H)2 + βFR

d2φ
2 + d3φ

3

)
. (54)

Before concerning about the influence of redeposition in
equation (54), we would like to discuss the pure erosion
BS-model (i.e. β = 0): it is often stated that the pat-
tern formation in this model is a result of the linear terms
which can exhibit a finite wavelength bifurcation where
only a small band of finite wave numbers are selected in
the linear regime [36,37,51,61]. Although this fact distin-
guishes the BS-model from the chaotic undamped KSE,
the BS-model also has a marginal stability in the limit of
small wave numbers k → 0. If the nonlinearities of the
composition field are negligible, i.e. d2 = d3 = 0, the BS-
model has much in common with a model for seismic waves
proposed by Nikolaevskiy, namely a finite wavelength bi-
furcation in combination with a marginal stability for
k → 0 and a (∇H)2-nonlinearity [62]. The Nikolaevskiy-
model is known for showing so-called soft-mode turbulent
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Fig. 21. (a) Soft-mode turbulence in the Bradley-Shipman
model without composition nonlinearities. (b) The consider-
ation of redeposition stabilizes patterns. (c) Same height as
(b), but with color-coded composition field φ. For the sake of
visibility, (b) and (c) are depicted with a height scale of 20,
whereas (a) is true to scale.

chaotic behavior [63], which is also the generic solution of
the BS-model without φ-nonlinearities.

A typical evolution of the latter with the coefficients

a1 = − 1.00, a2 = − 1.00, a3 = − 0.10,

b = 0.38, c = 1.00, d2 = 0.00,

d0 = − 0.25, d1 = 1.00, d3 = 0.00 (55)

is depicted in Figure 21a (height field H with color-coded
composition field φ). A small band of finite wavelengths
is selected in the linear regime (t = 250) and the corre-
sponding modes even start to arrange towards a slightly
hexagonal hole pattern (t = 550), but instead of converg-
ing to a perfect pattern, the order suddenly breaks up
into a spatio-temporal chaotic dynamics (t = 1500). This
soft-mode turbulence is a result of a complicated coupling
between the (∇H)2-nonlinearity and the marginal stabil-
ity for long wavelengths.

By adding redeposition in this chaotic regime of the
BS-model, we can investigate whether redeposition is able
to stabilize the soft-mode turbulent behavior. Starting
with the same initial condition as in Figure 21a, but in-
cluding redeposition (Ytilt, fskew and β = 3.0), yields the
result depicted in Figure 21b. One can see comparable
surface evolution in the linear regime (see Fig. 21c for
the same run as in Fig. 21b, but with the corresponding
color-coded composition field φ). However, at t = 550,

the presence of redeposition leads to the emergence of hill
structures instead of the holes. In the limit of long times,
redeposition prevents the soft-turbulence to break up the
order and hexagonally arranged dots with the typical re-
deposition profile can be found. Interestingly, the result-
ing dot pattern (depicted with a height scale factor 20 in
Figs. 21b and 21c) has an aspect ratio of only ε = 0.059.
Thus, although the redeposition effect is proportional to ε2

here, it plays an decisive role for the resulting morphology.
Our conclusions regarding redeposition and the

Bradley-Shipman model are twofold: on the one hand, we
have found out that redeposition is also able to act as
a stabilization mechanism when combined with other ero-
sion models. On the other hand, the generic solution of the
normal BS-model without φ-nonlinearities, Figure 21a,
shows clearly that the pattern formation in the BS-model
is not a direct result of the finite wavelength bifurca-
tion. Instead, the composition nonlinearities d2φ

2 and/or
d3φ

3 are additionally required prerequisites for pattern
formation. The reproduction of the experimentally found
nanopatterns within the framework of a continuum model
can thus be done by two approaches: while the required
symmetry H → H +const. do not allow for local absolute
height terms, non-local height differences as in the rede-
position model FR or the non-locally damped KSE can
be included to successfully reproduce the patterns. The
patterns in a pure local model like the BS-model are not
a direct consequence of the finite-wavelength bifurcation.
Instead, by coupling in an additional field φ which is not
restricted by a symmetry requirement φ → φ + const.,
absolute terms like φ2 and φ3 can be included. The lat-
ter stabilize the pattern by inhibiting the emergence of a
soft-mode turbulence.

5 Conclusion

We have thoroughly investigated the impact of rede-
positing particles on the self-organized pattern forma-
tion during ion-beam erosion in the framework of a two-
dimensional continuum model. The model exhibits a scale
invariance with respect to an isotropic scaling of height
and lateral extents of the surface. This simplifies the anal-
ysis, but also rules out a simple approximation of the re-
deposition function with constant coefficients. However,
by analyzing static prestructured surface morphologies,
we have shown that eroded particles predominantly re-
deposit in the vicinity of the valleys, whereas almost no
particles reattach at the hilltops. This typical distribution
is a characteristic property of the redeposition mechanism
since it was found to be qualitatively independent of the
specific models for the sputter yield, the angular erosion
distribution and the considered surface morphology.

We were able to approximate the redeposition mecha-
nism in terms of the relative height and the local slope, but
the corresponding coefficients depend on the aspect ratio
of the surface. This analysis – supported by the Fourier
decomposition of the redeposition function – reveals a con-
tribution in form of a linear damping term. Furthermore,
higher order terms – in particular also the dependence on
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the local slope – must also be taken into account. Thereby,
a positive term (∇H)2 arises due to the enhanced amount
of redepositing particles when a surface element faces to-
wards the neighboring structures.

Furthermore, we have investigated the origin of rede-
positing particles. The latter predominantly stem from
erosion events within the range of the neighboring struc-
tures. Especially for hole patterns, redeposition is confined
to each individual hole, whereas the distance between ero-
sion and redeposition can be higher on hexagonally ar-
ranged dot morphologies.

After the investigation of prestructured surfaces, the
spatio-temporal interplay of erosion and redeposition was
analyzed. The combination of redeposition with the un-
damped Kuramoto-Sivashinsky equation as minimal ero-
sion model can lead to an emergence of self-organized
hexagonally ordered dot-structures. The latter have as-
pect ratios comparable with experiments and can be found
in an extended region in the parameter space and even
for non-trivial initial surfaces. Thus, redeposition can act
as trigger for pattern formation under ion-beam erosion.
While redeposition is not present for very flat surfaces, it
sets in with increasing surface roughness and the corre-
sponding fit coefficients of the afore-mentioned approxi-
mation converge quickly to constant values. In the non-
linear regime, both the full model and the approximation
with the extracted coefficients support the arrangement of
well-ordered dots with the typical redeposition profile.

Finally, we have briefly tested how redeposition in-
teracts with the Bradley-Shipman erosion model for bi-
nary compounds. When the nonlinearities in the evo-
lution equation for the composition field are neglected,
the Bradley-Shipman model shows chaotic behavior (soft-
mode turbulence). The influence of redeposition, how-
ever, is able to stabilize structures in combination with
this erosion model as well, although redeposition is only
marginally present for the resulting very shallow pattern.

The authors thank the Deutsche Forschungsgemeinschaft
(FOR 845) for financial support.

Appendix A: Numerical algorithm

The numerical calculation of the redeposition functional
FR in two dimensions is only feasible when an elaborated
algorithm is used. The implementation of our algorithm
is briefly discussed in the following.

The height field is discretized on a cell-centered grid
with M × N points and periodic boundary conditions.
For each time-step and each of these points xR, FR(xR, t)
has to be calculated by integrating over all surrounding
grid points (xE, HE) that are visible from the considered
position (xR, HR). Due to the periodic boundaries, the
range of the integral, i.e. of the possible visibility range,
is not bounded. This can be clearly seen when a perfect
ripple surface H(x, y) = cos(kx) is considered: the visi-
bility vH becomes a function of xR and xE only and if
vH(xR, xE) = 1 holds, visibility is given for all yR and yE,

in particular for |yR − yE| → ∞. Therefore, the integra-
tion range has to be restricted in the numerical algorithm
to a finite distance R (measured in grid points) between
xR and xE. We will discuss an appropriate choice for R
later on.

A straight-forward implementation of the visibility de-
termination according to the definition (13) would have
to evaluate dH(xR,xE, μ) for all μ ∈ (0, 1). In total, this
would lead to a calculation time of O(MNR3) for one
time-step, where the factors MN , R2 and R stem from
the iteration over all considered points xR, the integration
over all points xE within the range R and the determina-
tion of the visibility along the connection line, respectively.

In our algorithm, we exploit several properties of the
visibility function: since vH(x1,x2) is symmetric with re-
spect to its arguments, the visibility for each point x1

is only determined for all x2 in the upper semicircle
with radius R (cf. Fig. A.1a). In case of visibility, the
FR-integral contributions with both(xR,xE) = (x1,x2)
and (xR,xE) = (x2,x1) are accumulated simultaneously
to the corresponding result FR(xR). Furthermore, for each
x1, the visibility of all points x2 which are laterally located
on the same line are calculated in a single pass. Thereby,
each of these lines is reduced to a one-dimensional vis-
ibility determination. For each of these lines, all lateral
intersection points with the grid are calculated in before-
hand (Fig. A.1b). To that end, each grid cell is decom-
posed into four triangles with intermediate corner points
interpolated at quadratic order. The lateral coordinates
of the intersection points are calculated only once for a
single x1 since the same stencil applies for the entire grid.
In order to circumvent range overflow tests, the grid is pe-
riodically extended by R points into all four directions in
beforehand, but the iteration over all x1 only comprises
the central M ×N points. Since FR-integral contributions
stemming from the symmetric visibility accumulation at
x2 can be outside this area, these contributions are addi-
tively mapped to the corresponding central points at the
end of each algorithm pass. Furthermore, a field Hmax of
the size M × N is initialized, which stores the maximum
height for each grid point and the corresponding adjacent
interpolated intermediated points.

The one-dimensional visibility determination along all
points x2 which lie on the same line is illustrated in Fig-
ure A.1c: we introduce the lateral coordinate λ along the
line starting with λ = 0 at x1 and having each grid point
x2 located at the integers λ = 1, 2, . . . The visibility deter-
mination begins with a ray starting at (λ = 0, H(x1)) and
with a slope that is initialized by the directional derivative
of the surface height along the line direction. Every point
(λ, H(x2(λ))) at λ = 1, 2, . . . that is below this ray cannot
be visible from the considered starting point. If however
the height at a grid point x2 is above the ray, visibility
cannot be ruled out. Next, the directional derivative at
these x2 is compared with the current ray slope, by what
e.g. the point at λ = 1 in Figure A.1c can be marked as
invisible. The ray slope is increased to match the connect-
ing line from λ = 0 to λ = 1 since all following points
with λ > 1 will be obstructed when they are below this
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Fig. A.1. Schematic illustration of the algorithm: (a) be-
fore the algorithm starts, a stencil is build by grouping all
points within the range m′2 + n′2 ≤ R2 into line groups Gi

(i = 1, 2, . . .). (b) For each line Gi, all corresponding lateral
intersection coordinates Ihv

i and Id
i with the horizontal and

vertical and with the diagonal grid partition, respectively, are
calculated. (c) One-dimensional algorithm along each of the
line groups from (a) using the calculated lateral intersection
data from (b).

new ray. The point at λ = 2 in Figure A.1c, however,
cannot be ruled out as invisible by the mentioned criteria
because it is located above the current ray and the sur-
face element faces towards starting point. In this case, the
algorithm has to investigate the surface height on a finer
level. This is accomplished by comparing the height along
the ray with the maximum values stored in Hmax (bars in
Fig. A.1c). Only when the ray is beneath the correspond-
ing height Hmax, the finest level – i.e the height at the
intersection points Id

i in Figures A.1b and A.1c – has to
be investigated. Thus, there are three levels of detail in the
algorithm, where the next finer level is only investigated
when the visibility cannot be determined at the current
level. A final optimization is achieved by testing the ray
height against the global maximum of the surface. The
current one-dimensional pass can be terminated when the

ray with a positive slope exceeds this height, because all
following points will be obstructed.

The spatio-temporal integration of the evolution equa-
tions (47), (52)–(54) is implemented based on a pseudo-
spectral method [64] in combination with an exponential
time-differencing scheme [65].

Used discretizations

The algorithm was validated based on the connection to
the one-dimensional redeposition model (cf. Sect. 2.4) and
the corresponding solutions from reference [52]. For the
static investigation of FR on hexagonally arranged sur-
faces, we have used the discretization

M × N = 84 × 97, Δx =
2L

97
,

R = 500 grid points, (A.1)

by what the error on the periodic boundary is minimized
and more than ten lateral periods L are considered for
the visibility determination. Since this discretization is
not feasible to comprise multiple periods of self-organizing
structures in each time-step of a spatio-temporal evolu-
tion, we have used

M × N = 100 × 100, Δx = 0.71086127,

R = 40 grid points, (A.2)

in Section 4 (except Δx = 0.820832 in Fig. 21). With
these parameters, 8 × 7 hexagonally arranged structures
with the critical wavenumber kc fit into the grid. However,
in comparison to the fine discretization (A.1), there are
now only approximately 14.43 instead of 48.5 grid points
per characteristic length L. To investigate the error stem-
ming from a coarser discretization, we have prestructured
hexagonal dot structures with L = 1 on a 84 × 97 grid,
but with different discretizations Δx. The integration ra-
dius R was scaled appropriately in order to consider al-
ways the same number of lateral periods. From the results
in Figures A.2a and A.2b it is apparent that a coarser
discretization has only a minor impact on the calculated
redeposition FR. The discretization in Figure A.2b sam-
ples a lateral period L with 12.125 grid points. Thus, the
parameters (A.2) used for the spatio-temporal evolution
is even more accurate than Figure A.2b.

Furthermore, the integration range R = 40 from the
parameters (A.2) comprises now only approximately three
lateral periods L instead of more than ten period in (A.1),
but from Figure 14 it can be inferred that the relevant part
of FR is included within this range. To substantiate this
specific choice of R, we have investigated the impact of R
for representative time-steps of the evolutions depicted in
Figures 16a and 16c. We have chosen the redeposition ra-
tio η as indicating quantity since it is a direct measure of
the considered redepositing particles. From the graphs in
Figure A.2c it is apparent that at R = 40 almost the en-
tire amount of redepositing particles has been considered.
The maximum deviation between η at R = 40 and the
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Fig. A.2. (a,b) FR plotted against ĥ for different spatial dis-
cretizations Δx: (a) Δx = 2/97 and R = 720 grid points,
(b) Δx = 8/97 and R = 180 grid points. (c) Influence of the
considered integration radius R on the redeposition ratio η for
individual time-steps from the evolution depicted in Figure 16a
(red) and Figure 16c (blue).

converged value at R = 1000 is below 2.5%. Hence, the
relevant part of redeposition is considered with a maxi-
mum visibility radius of R = 40.

Appendix B: Fit coefficients
for the small-gradient approximation FB

R

For the small-gradient approximation FB
R (cf. Eq. (20)) we

have determined the fit coefficients of (33) by the proce-
dure described in Section 3.3. With the appropriate value
fθ = 1/π, the quadratic onsets of the fit coefficients for
ε ≈ 0 coincide with the corresponding curves for fcos θ and
fskew.

For the case Y = Yconst, the coefficients for FB
R read for

hexagonally ordered dot structures (with JVaY (0) = 1):

FR,0 = 0.887·ε2, b̂ = − 1.793·ε2, ĉ = 0.684·ε2,
d = 0.265, p̂ = − 0.073, q̂ = 0.027,

RMSE = 0.004·ε2,
(B.1)

whereas the following results were obtained on the
nanohole morphology:

FR,0 = 0.463·ε2, b̂ = − 2.785·ε2, ĉ = 4.165·ε2,
d = 0.294, p̂ = − 0.100, q̂ = − 0.061,

RMSE = 0.003·ε2.
(B.2)

The Fourier coefficients F̃i, which have been discussed in
Section 3.4, have the following numerical values for dots:

F̃0 = 1.947·ε2, F̃1 = − 0.065·ε2, F̃2 = − 0.317·ε2,
F̃3 = − 0.309·ε2, F̃4 = 0.006·ε2, F̃5 = 0.020·ε2,

RMSE = 0.004·ε2
(B.3)

while on holes the corresponding values are

F̃0 = 1.946·ε2, F̃1 = 1.265·ε2, F̃2 = − 0.293·ε2,
F̃3 = − 0.180·ε2, F̃4 = − 0.008·ε2, F̃5 = − 0.025·ε2,

RMSE = 0.007·ε2.
(B.4)
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Garćıa, M. Castro, R. Gago, in Toward Functional
Nanomaterials, Lecture Notes in Nanoscale Science and
Technology, edited by Z.M. Wang (Springer-Verlag New
York, 2009), Vol. 5, pp. 323–398

2. G. Carter, J. Phys. D 34, R1 (2001)
3. W.L. Chan, E. Chason, J. Appl. Phys. 101, 121301 (2007)
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Instrum. Meth. B 216, 9 (2004)
12. L. Bischoff, W. Pilz, B. Schmidt, Appl. Phys. A 104, 1153

(2011)
13. L. Bischoff, K.H. Heinig, B. Schmidt, S. Facsko, W. Pilz,

Nucl. Instrum. Meth. B 272, 198 (2012)
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17. R. Böttger, K.H. Heinig, L. Bischoff, B. Liedke, R. Hübner,
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