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Abstract. We use the methods of quantum chaos and Random Matrix Theory for analysis of statistical
fluctuations of PageRank probabilities in directed networks. In this approach the effective energy levels are
given by a logarithm of PageRank probability at a given node. After the standard energy level unfolding
procedure we establish that the nearest spacing distribution of PageRank probabilities is described by the
Poisson law typical for integrable quantum systems. Our studies are done for the Twitter network and
three networks of Wikipedia editions in English, French and German. We argue that due to absence of
level repulsion the PageRank order of nearby nodes can be easily interchanged. The obtained Poisson law
implies that the nearby PageRank probabilities fluctuate as random independent variables.

1 Introduction

The PageRank vector P (K) of the Google matrix Gij had
been proposed by Brin and Page for ranking of nodes
of the World Wide Web (WWW) [1]. At present the
PageRank algorithm became a fundamental element of
various search engines including Google search [2]. This
ranking works reliably also for other networks like the
Physical Review citation network [3,4], Wikipedia [5–7]
and other networks including even the world trade net-
work [8]. Thus it is important to understand the statistical
properties of the PageRank vector.

To study the properties of PageRank probabilities we
use the standard approach [1,2] following the notation
used in reference [6]. The directed network is constructed
in a usual way: a directed link is formed from a node j
to a node i when j quotes i and an element Aij of the
adjacency matrix is taken to be unity when there is such
a link and zero in absence of link. Then the matrix Sij

of Markov transitions is constructed by normalizing ele-
ments of each column to unity (

∑
i Sij = 1) and replacing

columns with only zero elements (dangling nodes) by 1/N ,
with N being the matrix size. Then the Google matrix of
the network takes the form [1,2]:

Gij = αSij + (1 − α)/N. (1)

The damping parameter α in the WWW context describes
the probability (1 − α) to jump to any node for a ran-
dom surfer. For WWW the Google search engine uses
α ≈ 0.85 [2]. The matrix G belongs to the class of Perron-
Frobenius operators [2], its largest eigenvalue is λ = 1
and other eigenvalues have |λ| ≤ α. The right eigenvector
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at λ = 1, which is called the PageRank, has real non-
negative elements P (i) and gives a probability P (i) to
find a random surfer at site i. Thus we can rank all nodes
in a decreasing order of PageRank probability P (K(i)) so
that the PageRank index K(i) counts all N nodes i ac-
cording to their ranking, placing the most popular nodes
at the top values K = 1, 2, 3 . . . In numerical simulations
the vector P (Ki) can be obtained by the power iteration
method [2]. The Arnoldi method allows to compute effi-
ciently a significant number of eigenvalues and eigenvec-
tors corresponding to large values of |λ| (see e.g. [9–11]).

From a physical viewpoint we can make a conjecture
that the PageRank probabilities are described by a steady-
state quantum Gibbs distribution [12] over certain quan-
tum levels with energies Ei. In the frame of this conjecture
the PageRank probabilities on nodes i are given by:

P (i) = exp(−Ei/T )/Z, Z =
∑

i

exp(−Ei/T ) (2)

and inversely the effective energies Ei are given by:

Ei = −T ln P (i) − T ln Z. (3)

Here Z is the statistical sum and T is a certain effective
temperature. In some sense the above conjecture assumes
that the operator matrix G can be represented as a sum
of two operators GH and GNH where GH describes a her-
mitian system while GNH represents a non-Hermitian op-
erator which creates a system thermalization at a certain
effective temperature T with the quantum Gibbs distribu-
tion over energy levels Ei of operator GH . The last term
in (3) is independent of i and gives a global energy shift
which is not important. We note that PageRank probabil-
ities describe a stationary state of G and its probability

http://www.epj.org
http://dx.doi.org/10.1140/epjb/e2014-50123-4


Page 2 of 4 Eur. Phys. J. B (2014) 87: 93

can be always presented in the form (3). Thus our method
can be used for any directed network. However, implicitly
it is assumed that the relaxation dynamics is a complex
process and that a considered network has many nodes
and many complex links between nodes.

The statistical properties of fluctuations of levels have
been extensively studied in the fields of Random Matrix
Theory (RMT) [13] and quantum chaos [14]. The most
direct characteristics is the probability distribution p(s)
of level spacings s statistics. Here s = (Ei+1 − Ei)/ΔE
is a spacing between nearest levels measured in the units
of average local energy spacing ΔE. Thus the probabil-
ity distribution p(s) is obtained via the unfolding proce-
dure which takes into account the variation of energy level
density with energy E [14]. We note that the value of T
in (3) does not influence the statistics p(s) due to spectrum
unfolding and definition of s in units of local level spacing.

In the field of quantum chaos it is well established
that p(s) is a powerful tool to characterize the spectral
properties of quantum systems. For quantum systems,
which have a chaotic dynamics in the classical limit (e.g.
Sinai or Bunimovich billiards [15]), it is known that in
generic cases the statistics p(s) is the same as for the
RMT, invented by Wigner to describe the spectra of com-
plex nuclei [13,16,17]. This statement is known as the
Bohigas-Giannoni-Schmit conjecture [16]. In such cases
the distribution is well described by the so-called Wigner
surmise p(s) = (πs/2) exp(−πs2/4) [14,17]. For integrable
quantum systems (e.g. circular or elliptic billiards) one
finds a Poisson distribution p(s) = exp(−s) correspond-
ing to the fluctuations of random independent variables.
Such a Poisson distribution is drastically different from
the RMT results characterized by the level repulsion at
small s values.

The strong feature of p(s) statistics is that it describes
the universal statistical fluctuations. Thus its use for de-
scription of PageRank fluctuations is very relevant, it pro-
vides a new statistical information about PageRank prop-
erties. We describe the results obtained within such an
approach in next sections.

2 Statistical properties of PageRank
probabilities

For our studies we use the network of entire Twitter 2009
studied in [11] with number of nodes N = 41 652 230
and number of links N� = 1 468 365 182; network of En-
glish Wikipedia (Aug 2009; noted below as Wikipedia)
articles from [5] with N = 3 282 257, N� = 71 012 307;
German Wikipedia (dated November 2013, noted below as
Wikipedia-DE) with N = 1 532 977, N� = 36 781 077 and
French Wikipedia (dated November 2013; noted below as
Wikipedia-FR) with N = 1 352 825, N� = 34 431 943. For
the last two cases we use the network data collected by
Vigna [18].

For a given network the PageRank is computed as
usually by the power or iteration method for a typical
value of the damping factor α = 0.85. The probabilities Pi
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Fig. 1. Dependence of top PageRank levels Ei = − ln(Pi) on
the damping factor α for Twitter (left panel) and Wikipedia
(right panel). Data points on curves with the same color symbol
correspond to the same node i. The lower panels are obtained
by a zoom in an energy range from the top panels. About 150
(for Twitter) or 50 (for Wikipedia) lowest levels are shown in
top panels.

are computed with a relative precision better than 10−12.
For each node i its PageRank value Pi is associated to a
pseudo-energy Ei by the relation Ei = − ln(Pi). Obviously
the energy spectrum is ordered if the index is given in the
rank index K, i.e. EK+1 ≥ EK . Therefore the number n
of levels below a given pseudo-energy E is given by n = K
if EK < E < EK+1 (we also use index i for Ei).

The evolution of energy levels Ei with the variation of
the damping factor α is shown in Figure 1 for Twitter and
Wikipedia networks. The results show many level cross-
ings which are typical of Poisson statistics. We note that
here each level has its own index so that it is rather easy
to see if there is a real or avoided level crossing. In this
respect the situation is simpler compared to energy levels
in quantum systems.

In the following we fix the damping factor to the
standard value α = 0.85. To obtain the unfolded spec-
trum with an average uniform level spacing of unity (see
e.g. [14]) one has to replace the function Ei by a smooth
function. As shown in Figure 2, one can very well approx-
imate EK by a polynomial Q(x) of modest degree in the
variable x = ln(K). In this procedure it is better to ex-
clude the first ten nodes with K ≤ 10 which do not affect
the global statistics. For a fit range 10 < K ≤ 104 a poly-
nomial of degree 2 is already sufficient. However, for larger
intervals, e.g. 10 < K ≤ 107 for Twitter or 10 < K ≤ 106

for Wikipedia it is better to increase the polynomial de-
gree up to 20. Once the polynomial fit is known one ob-
tains the unfolded energy eigenvalues Si by solving the
equation Ei = Q(ln(Si)) using the Newton method. For
each energy the obtained value of Si ≈ i is rather close to
K = i index with an average spacing of unity. In certain
cases this equation does not provide a solution for energies
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Fig. 2. The thick red curve shows − ln(P ) = E versus K
for the PageRank probability P of Twitter (Wikipedia) in the
left (right) panel. The thin green curve corresponds to the
fit − ln(P ) = Q(ln(K)) where Q(x) is a polynomial of de-
gree q = 2. The thin blue curve corresponds to the fit with a
polynomial of degree q = 20 (q = 10). The fits are obtained
for the range 10 < K ≤ 107 (10 < K ≤ 106) with weights
∼1/K attributed to each data point. Here and in next figures
α = 0.85.
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Fig. 3. Histogram of unfolded level spacing statistics using
pseudo-energies Ei = − ln(Pi) of Twitter (Wikipedia) shown
in the left (right) panel. The unfolding is done with the fit
shown in Figure 2 using a polynomial of degree 2 and a fit range
10 < K ≤ 104. The Poisson distribution pPois(s) = exp(−s)
and the Wigner surmise pWig(s) = π

2
s exp(−π

4
s2) are also

shown for comparison.

close to the boundary of the fit range. In these cases the
unfolded spectrum is slightly reduced with respect to the
initial fit range.

In Figure 3 only a polynomial of degree 2 is used since
the fit range 10 < K ≤ 104 is rather small and the his-
togram fluctuations, compared with the Poisson distribu-
tion, are still quite considerable due to the limited number
of Ns ∼ 104 data points. The obtained data show a good
agreement of results with the Poisson statistics.

In Figure 4 we show the integrated probability to find
a level spacing larger than s:

Ip(s) =
∫ ∞

s

ds̃ p(s̃). (4)

This quantity is numerically more stable since no his-
togram is required. One simply orders the spacings si =
Si+1−Si and draws the ratio 1− i/Ns versus si where i is
the ordering index of the spacings and Ns is the number
of spacings in the numerical data.

The data shown in Figure 4 clearly demonstrate
that Ip(s) follows the Poisson expression Ip(s) = exp(−s)
for a quite large range of level spacings. Of course, for the
largest values of s there are deviations which are either
due to the lack of statistics (especially for modest values
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Fig. 4. The color curves show the integrated probability
Ip(s) =

∫ ∞
s

ds̃ p(s̃), given in semi-logarithmic representa-
tion, for the PageRank probabilities for networks of Twitter,
Wikipedia, Wikipedia-DE and Wikipedia-FR. The unfolding is
done as in Figure 2 using a fit polynomial of degree 20 and a fit
range 10 < K ≤ Kmax with three different values of Kmax given
in the panels. The black line corresponds to Ip(s) = exp(−s)
obtained for the case of Poisson distributed levels.

of Kmax) or due to the fact that the number of levels is
close to the total network size.

We also note that for large values of K ≥ 106 there
are Nd degenerate nodes with identical P (i) values with
at least one more another node or a few nodes. Such an
effect has been pointed in reference [11]. These artificial
degeneracies provide an additional delta function contri-
bution w0 δ(s) in the Poisson statistics p(s) where w0 is
the probability to find such a degeneracy. There are about
Nd ≈ 102 (Nd ≈ 105) degeneracies for Twitter nodes for
K < 106 (K < 107) which gives w0 ≈ 10−4 (w0 ≈ 10−2).
In a histogram of bin-width Δs = 0.1 this gives a rel-
ative change of the height of the first bin at s = 0 of
10 w0 ≈ 10−3 (≈10−1) and unless we use too large K
value the statistical contribution of such degenerate nodes
is indeed very small.

We note that if we use all nodes of Twitter up to
K < 4.2 × 107 we have Nd ≈ 1.1 × 107 with w0 ≈ 0.26
which is indeed considerable. In this particular case also
the distribution of close degeneracies (0 < s � 1) is
quite different from the (rescaled) Poisson distribution
(1 − w0) exp[−(1 − w0) s] for the non-degenerate levels.
Apparently a particular network structure, which is re-
sponsible for the degeneracies, also enhances the number
of close degeneracies. We attribute the appearance of such
degeneracies to weak interconnections between nodes at
the tail of PageRank probability where the fluctuations
are not stabilized being sensible to the finite network size.

Our data show that the Poisson statistics gives a good
description of fluctuations of PageRank probabilities. It
may be interesting to determine what are the nodes which
have very large spacings s from nearest levels on both
sides. It is natural to expect that those nodes will be rather
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Table 1. List of nodes with unfolded neighbor level spacings
si = Si − Si−1 > 4 for Wikipedia network.

K Si − Si−1 Si+1 − Si Title
996 8.43535 6.57294 Henry VIII of England
2966 4.07317 4.09474 The Age
3398 4.21163 4.65018 Debt
3982 4.30229 4.01818 GREEN
6098 4.42446 4.78164 Vomiting
6632 4.22776 4.38045 Mary I of Scotland
9388 4.42904 4.94249 Simulation

stable in respect to modifications of network or damping
factor variations. Such nodes for Wikipedia network are
shown in Table 1 for s > 4 and K < 104. Such a selection
captures two important figures of English history but the
reasons for appearing of other nodes still need to be clar-
ified. We think that a further study of nodes with large
statistical deviations of spacing values can provide a new
interesting information about robust nodes of a given net-
work. Even if such events are due to random fluctuations
still it is interesting to analyze the properties of such ex-
treme events. The validity of the Poisson statistics means
that the ranking order can be easily interchanged between
nodes with nearby values of PageRank index K.

We also analyzed the statistics of PageRank proba-
bilities for a random triangular matrix model (triangu-
lar RPFM) introduced in reference [19]. We find here the
Poisson statistics. We also consider CheiRank probability
vector of Wikipedia (it is given by the PageRank proba-
bility for the Wikipedia network with inverted direction
of links) [5] and also find here the Poisson distribution.

3 Discussion

We use the methods of quantum chaos to study the sta-
tistical fluctuations of PageRank probabilities in four net-
works of Twitter, Wikipedia English, German and French.
We associated the effective pseudo-energy levels Ei to
PageRank probabilities via the relation Ei = − lnPi and
use the unfolding level density procedure to have homo-
geneous spacings between levels. This procedure is com-
monly used in the field of quantum chaos (see e.g. [14,17]).
Our studies show that the level spacing statistics is well
described by the Poisson distribution p(s) = exp(−s).
Thus there is any sign of level repulsion typical of the
quantum chaotic billiards [16] and RMT [13]. Such a re-
sult can be considered as a natural one for nodes with large
values of PageRank index K where nodes can be assumed
as independent. However, the Poisson distribution remains
valid even for relatively low values K ≤ 104 where a sig-
nificant number of links exist between the users of Twitter
as discussed in reference [11]. Thus even a large number
of links between top nodes does not lead to their interde-
pendence so that nearby PageRank probabilities behave
themselves as random independent variables. In all exam-
ples of large directed networks considered we found the
Poisson statistics. We can make a conjecture that this is

a generic situation. However, it may happen that some
networks can have a repulsion of nodes and, who knows,
may the Wigner-Dyson statistics.

We should note that the relation Ei = − lnPi, used in
our studies to have a correspondence with level spacing
statistics, is not really so important since after that we
apply the unfolding procedure. Due to this our method
simply gives us the fluctuations of nearby PageRank prob-
abilities in a correctly weighted dimensionless representa-
tion where the validity of Poisson distribution becomes
directly visible. We think that the investigation of nodes
with large spacings with nearby nodes in K can provide a
new useful information for network analysis.

This research is supported in part by the EC FET Open project
“New tools and algorithms for directed network analysis”
(NADINE No. 288956). We thank Sebastiano Vigna for pro-
viding us the network data for German and French Wikipedia,
collected in the frame of NADINE project; these data sets can
be obtained from the web page of Vigna [18].
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