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Abstract. On the basis of the experimental data concerning interactions between humans the process of
epidemic spreading in a social network was investigated. It was found that number of contact and average
age of nearest neighbors are highly correlated with age of an individual. The influence of those correla-
tions on the process of epidemic spreading and effectiveness of control measures like mass immunizations
campaigns was investigated. It occurs that the magnitude of epidemic is decreased and the effectiveness of
target vaccination is increased.

1 Introduction

Strong heterogeneity and mixing patterns are one of the
most important properties of social network [1–3], because
it strongly influences dynamic phenomena in social net-
works. Some examples of such phenomena are epidemic
spreading, information flow, rumour propagation or opin-
ion formation [4–7]. Real-world, as well as on-line, social
networks have attracted the attention of the physicists
community. Because the available data sets are vast, it
is possible to use techniques of statistical physics [2], e.g.
large on-line networks like e-mail networks [8] and web-
based social networks [9] or artificial communities (e.g.
players who interact in the large virtual world of a mas-
sive multiplayer online role playing game [10]) were inves-
tigated. Recent questionnaire studies [11] have provided
large data sets concerning real-world contacts.

Heterogeneity of contact patterns is recognized as an
important feature for realistic modeling of many epi-
demics, e.g. contact heterogeneity has been shown to have
a large impact on epidemic thresholds and the final size of
epidemics [12,13]. One of the important factors influencing
structure of the network (and increasing heterogeneity) is
the age of the node [3,14]. This is so because many of
the real networks evolve in time, hence the age influences
connection creation probability (as well as the probabil-
ity that connection will be removed) [15,16]. In real life
networks, a time factor may also modulate the attach-
ment probability, therefore in many models of evolving
networks [17], especially growing networks, it is assumed
that the connection probability is described by a func-
tion of connectivity and age of existing nodes. This is a
more general approach and allows getting deeper insight
in critical behavior of networks, e.g. phase transition from
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small-world network to scale-free network was investigated
and phase diagram was obtained [18].

The aim of this study is to investigate droplet-/air-
borne infections, which require physical closeness between
the infected and susceptible individual, therefore the so-
cial network model is based on observed one day con-
tact patterns, including both types of physical contacts
reported in the study – conversations and touch. To con-
struct the social network model we incorporated data from
contact survey conducted in Poland in the framework of
POLYMOD [11,13]. Quota sampling was employed tak-
ing into consideration population distribution by age, sex,
region and type of residence (rural, city < 100 000 and
city > 100 000). The participants were recruited by trained
interviewers visiting random households and each of par-
ticipants was randomly assigned one day when they had
to record all contacts. A contact was defined as a conver-
sation in physical presence or a touch. Participants were
asked to fill the total duration of all contact episodes with
each contact person during the assigned day, as well as
location of contacts and usual frequency of contacts with
that person. Detailed description of the study is provided
elsewhere [11].

The degree distribution of the social network is pre-
sented in Figure 1a. Initially total degree distribution in-
creases and has a maximum for k = 5. However for large
enough k (k > 5) the degree distribution has an expo-
nential form P (k) ∼ e−αk. The value of the exponent α
equals 0.07.

We have found that an important factor significantly
influencing the structure of a social network is an age A
of each individual. The connectivity of an individual de-
pends on its age (see Fig. 1b). Maximum connectivity is
observed for teenagers and decreases (approximately lin-
early) with age increasing. The average age of nearest
neighbors ANN is highly correlated with the age of an
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Fig. 1. The degree distribution (a), the relationship between
age and degree (b) and the relationship between age and av-
erage age of nearest neighbors (c). Demographic structure in
Poland (d), data source – Central Statistical Office.

individual (see Fig. 1c). For an age greater than 20 years
the ANN increases approximately linearly with age of an
individual increasing. It should be noted that similar re-
sults we have found in on-line social networks [19]. The
demographic structure in Poland is shown in Figure 1d.

2 The model

The second aim of our work is to investigate numerically
the influence of age-age and age-degree correlations on the
process of epidemic spreading in a social network. There-
fore the following procedure of network creation was used.
For a chosen number of individuals N , at first the age a of
each an individual is chosen according to the demographic
structure (individuals are binned in 5 years age groups).
The number of connections k and age of neighbors of an
individual is drawn from experimental distribution, i.e.
ith individual initially has ki free connections and each
connection has assigned desired age of a neighbor.

Initially all individuals are not connected. Next, con-
nections between individuals are created. However, each
pair of individuals can be connected only once, and a new
connection is added to the ith individual only when its
actual number of connections is smaller than the value ki.
Because we take into account age of individuals, a pair
of nodes (i, j) can be connected only if ith individual has
free connection to the individual with age aj , and jth in-
dividual has free connection to the individual with age ai.
After creating a connection between individuals i and j
additionally “clustering” procedure is applied. This means
that, if possible a new connection is created between the
ith individual and an individual randomly selected from
available (i.e. having at least one free connection to which
proper age is assigned) neighbors of the jth individual.
Iteration of this procedure allows to obtain the desired
distribution of connectivity (actual number of connections
of a node equals the value which was drown from desired
distribution). Such a procedure allows us to create the net-
work which has properties typical for social networks, e.g.
small average shortest path, large clustering (0.2), assor-
tative mixing [3,20]. Moreover we have taken into account
age-age and degree-age correlations.

In the literature there are many models of epidemic
spreading with different mechanisms of contagion [21–23].
However, to understand better the influence of human dy-
namics on the process of spreading, we used a simple SIR
model [24,25]. In our model, each individual is in one of
three permitted states: healthy and susceptible (S), ill (I),
healthy and unsusceptible or isolated from the rest of the
population (R).

In SIR models based on differential equations it is of-
ten assumed that an increase in the number of ill individ-
uals NI is proportional to NI [25,26]. We assume that the
probability of an infection of an ill individual equals β (in
other words β is probability of infection per day of con-
tact). The probability of transition between states I and R
equals 1. In our model β does not depend on age, however
in the case of some diseases such dependency may occur.

3 Results

Computations were performed for the initial conditions
with one ill (I) and randomly located individual and the
rest of the population healthy and susceptible (S). Syn-
chronous dynamics were used with the assumption that
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Fig. 2. Influence of the parameter β on the average magni-
tude of the epidemic, V for different types of networks (network
with age structure – solid line, network without age structure –
dashed line). Results were averaged over 103 independent
simulations. The size of the network: 105 individuals.

individuals can change their state only once in each time
step. To investigate the dynamics of the spreading process
and the magnitude of an epidemic, we introduced two ob-
servables: the time tmax when the maximal number of ill
individuals is reached and the magnitude of the epidemic,
V , defined as the relative number of individuals who had
the disease during the epidemic.

Computations were performed for initial conditions
with one ill (I) randomly located individual and the rest of
the population healthy and susceptible (S). To investigate
the dynamics of the spreading process and the magnitude
of an epidemic, we introduced one observable: the magni-
tude of the epidemic (i.e. final attack rate), V , defined as
the proportion of individuals who had the disease during
the epidemic.

The relation between the control parameter describing
a disease and V is shown in Figure 2. To investigate the in-
fluence age-age and degree-age correlations computations
for network with the same degree distributions but with-
out age structure were performed. It occurs that the age
structure decreases the magnitude of epidemic. This is so
because the epidemic spreads mainly among individuals
with large number of connections and number of connec-
tions is highly correlated with age (cf. Fig. 1b). Hence, the
relative number of infected individuals depends on the age
(Fig. 3). Note that in the network age-age correlations are
observed also – most of connections are between individu-
als with similar age (cf. Fig. 1b). Therefore older individu-
als (and small children), who has small number of connec-
tions, are very rarely connected to individuals with large
number of connections. The probability that they will be
infected is relatively small, especially for small values of β.
With an increase in β, there is an increase in probability
that infection will spread from age groups with high num-
ber of connections to the age groups with small number
of connections. As a result the curve on Figure 3 becomes
more flat – the influence of age structure on the process
of epidemic spreading decreases.

It should be noted that such properties of a net-
work influence effectiveness of control measures like mass

Fig. 3. Relative number of infected individuals as a function of
age group for different values of β (0.05, 0.1, 0.15, 0.25, 0.5 and
0.75; respectively from bottom to top). Individuals are binned
in five years age groups. Results were averaged over 103 inde-
pendent simulations. The size of the network: 105 individuals.

Fig. 4. The relationship between V and the number of pre-
ventively vaccinated individuals NR0 for β = 0.5 and differ-
ent types of networks (with age structure – solid line, without
age structure – dashed line), (a) random vaccinations, (b) tar-
get vaccination. Results were averaged over 103 independent
simulations. The size of the network: 105 individuals.

immunizations campaigns [27]. Figure 4 shows the rela-
tionship between magnitude of epidemic V and relative
number of preventively vaccinated individuals NR0 (i.e.
the relative number of individuals who are in the state
R in time t = 0) for β = 0.5. With an increase in
the number of preventively vaccinated individuals NR0,
there is a decrease in the rate of spreading of infection.
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This is so because an epidemic cannot spread freely in the
presence of vaccinated individuals. However, for critical
value NR0 = NRC there is an abrupt decrease in the mag-
nitude of epidemic V : the epidemic is suppressed. This
phenomenon was described in vaccinated populations for
many diseases and is known as herd immunity [28]. It can
be regarded as a phase transition. Such phase transitions
are observed in percolating systems [26,29–31]. It is visible
that in the case of both types of networks (with or with-
out age structure) the magnitude of epidemic is similar. It
means that in the case of random immunization the herd
immunity level (NRC) is not affected by age structure of
social network.

Simulating effects of immunization targeted to indi-
viduals with the largest contact networks the herd im-
munity level (NRC) is generally lower than for random
vaccination (see Fig. 4b), implying greater efficiency of
this targeted approach. It is also visible that in the case
of target vaccinations the critical value NRC is lower if
age structure of social network is taken into account. This
is so because most of individuals with large number of
connections are only in a few age groups and most of con-
nections of these individuals are pointing to individuals
from these age groups. Immunizations of these individu-
als give much better results because the probability that
they will be infected is larger than in other age groups
(cf. Fig. 3). For large values of β > 0.5 the differences
between results for different networks (with and without
age structure) vanishes, because the epidemic can spreed
freely also among individuals in age groups with relative
low number of connections (see Figs. 1b and 3).

The SIR model (where the probability of infection
with kI ill neighbors equals βkI ; β is the microscopic
spreading (infection) rate, and infected individuals decay
into the removed class at the rate γ = 1) shows that the
expression for the critical threshold is a function of the mo-
ments of the degree distribution βC = 〈k〉

〈k2〉 . If the value
of β is above βC , the disease spreads and infects a finite
fraction of the population. On the other hand, when β
is below the threshold, the total number of infected indi-
viduals is infinitesimally small in the limit of very large
populations. In networks with a strongly fluctuating de-
gree distribution, the epidemic threshold approaches zero
for increasing sizes of networks. Such behaviour of perco-
lating systems is especially clearly visible in the case of
two dimensional systems. There are many mathematical
models describing real world scenarios, e.g. models of epi-
demics of plant diseases or forest fire models. In colonized
(saprotrophic) as well as parasitic pathogen fungal sys-
tems in soil activities occur practically in two-dimensional
spaces (soil layers). For a review see e.g. [32]. It should
be noted that in the case of finite two dimensional sys-
tems it is relatively easily to distinguish boundaries. In
the case of complex networks it is much more difficult
(however some kind of boundary is formed by nodes with
only one connection, because they cannot pass the dis-
ease further). Therefore it is in some sense more difficult
to get rid of finite size effect, e.g. by assuming periodic
boundary conditions. It is interesting that the process of

a disease spreading is similar to random walk of carrier in
a network (however this is constrained walk, only nodes
in the state S are accessible). The problem of wandering
at random in an lattice (or network) finds applications in
virtually all sciences [32].

4 Conclusions

It was shown that age structure, i.e. correlations between
age and degree and correlations between age of node and
age of its neighbors, observed in real social networks influ-
ences the process of epidemic spreading. The results of nu-
merical calculations indicate that age structure decreases
the magnitude of epidemic and increases the effectiveness
of target vaccination. Therefore age structure should be
taken into account in order to build more plausible models
of epidemic spreading.

Scientific work financed from the budget for science by the
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the Iuventus Plus program.
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