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Abstract. An infinite-volume limit solution of the thermodynamics of a BCS superconductor containing
spin 1/2 and 7/2 magnetic impurities, obtained recently in [D. Borycki, J. Maćkowiak, Supercond. Sci.
Technol. 24, 035007 (2011)] is exploited to derive the expressions for critical magnetic field Hc(T ). The
credibility of the resulting thermodynamically limited theoretical equations, which depend on the magnetic
coupling constant g and impurity concentration c, is verified on the experimental data for the following
superconducting alloys: LaCe, ThGd and SmRh4B4. Good quantitative agreement with experimental data
is found for sufficiently small values of c. The discrepancies between theoretical and experimental values
of Hc(T ) for larger values of c in case of LaCe and ThGd are reduced by introducing the concept of
the effective temperature T̃ , which accounts for the Coulomb interactions between the electron gas and
impurity ions. At low temperatures, the critical magnetic field is found to increase with decreasing tem-
perature T . This enhancement of the critical magnetic field provides evidence of the Jaccarino-Peter effect,
which was experimentally observed in the Kondo systems like LaCe, (La1−xCex)Al2 and also in the pseu-
doternary compounds, including Sn1−xEuxMo6S8, Pb1−xEuxMo6S8 and La1.2−xEuxMo6S8. The effect of
an external magnetic field H on a BCS superconductor perturbed by magnetic impurities was also studied.
On these grounds, by analyzing the dependence of superconducting transition temperature Tc on H of
(La1−xCex)Al2, we have shown, that for certain parameter values, external magnetic field compensates
the destructive effect of magnetic impurities.

1 Introduction

The effect of superconductivity has been discovered over
100 years ago [1]. Since then, many extraordinary prop-
erties accompanying this phenomenon, including perfect
diamagnetism, zero-resistance, magnetic levitation due to
expulsion of the magnetic field from a superconductor, flux
quantization, Josephson effect and vortex state have been
explained.

The promising future applications of superconductors
mainly concern electric power applications [2] and gener-
ation of high, uniform magnetic field, e.g. for magnetic
resonance imaging purposes [3]. However, the wide-scale
applications of superconductors are limited, because su-
perconductivity has been proven to be very sensitive to
the destructive effect of an external magnetic field and
the current density. In order to extend the applications of
superconductors it is strongly desirable to enhance the val-
ues of the critical magnetic field, critical currents and su-
perconducting transition temperature. These topics were
of high interest during past few decades [4–15].

The superconducting critical temperature, as shown
by Bednorz and Müller [4] and later by Hosono group [5],
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can be raised by adding new elements to the antiferromag-
netically ordered host system. Superconductivity appears
at small value of dopant concentration x. Subsequently,
the transition temperature Tc increases almost linearly
with x, and after reaching a maximum at optimal doping
level xopt, decreases and finally falls to zero. According to
this scenario, the existence of parent magnetic correlations
is viewed to be an essential feature of high-temperature
superconductivity.

On the other hand, Matthias et al. [6] discovered that
the superconducting transition temperature of lanthanum
decreases, when small amount (1 at.%) of the rare-earth
magnetic impurities are added. It was shown, that the
depression of Tc increases with the impurity spin value
and not, as it was expected, with the impurity magnetic
moment.

The experimental studies carried out by Matthias et al.
revealed another extraordinary property of superconduct-
ing alloys, namely the possible coexistence of magnetism
and superconductivity. The coexistence of superconduc-
tivity and long-range antiferromagnetic ordering of the
rare earth R magnetic moments was later discovered in
RMo6Se8 (R = Gd, Tb and Er) [16], RRh4B4 (R = Nd,
Sm and Tm) [17] and in RMo6S8 (R = Gd, Tb, Dy
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and Er) [18]. A similar overlap between superconductivity
and ferromagnetism was observed in ErRh4B4 [19] and
HoMo6S8 [20].

This discovery was surprising, since magnetism and
superconductivity had been believed to be mutually ex-
clusive, because the internal magnetic fields generated
in magnetically ordered systems are much larger than
the typical critical fields of superconductors. However, as
independently predicted by Fulde and Ferrell [21] and
Larkin and Ovchinnikov [22], the superconductor may
overcome the pair-breaking effect of magnetic field by
forming periodic regions of superconductivity separated
by domains of aligned spins. In such FFLO-state the order
parameter is spatially modulated along the field direction.
There are strong experimental suggestions for the occur-
rence of FFLO state in some heavy-fermion compounds,
e.g. in CeCoIn5 [23].

Paradoxically, under specific circumstances, the exter-
nal magnetic field can even enhance (instead of depress)
the properties of superconductors, e.g. the upper critical
field Hc2 of SmRh4B4 increases below the Néel temper-
ature TN = 0.87 K [9,10]. The latter can be understood
on the grounds of the Jaccarino-Peter effect [24], in which
the external magnetic field compensates the antiferromag-
netic exchange interaction generated by the conduction
electrons antiferromagnetically coupled to the spins of lo-
calized magnetic moments. The Jaccarino-peter compen-
sation effect has been observed in several systems, e.g. in
Eu0.75Sn0.25Mo6S7.2Se0.8 [25].

In this study, we shall not investigate the FFLO state,
since we assume a spatially uniform superconducting order
parameter and spherical Fermi surfaces. In such the case,
only the Jaccarino-Peter effect can be considered as the
possible source of the superconductivity enhancement. Be-
fore going into details, let us briefly summarize theoretical
investigations of the superconductors containing magnetic
impurities.

Early theoretical investigations of the problem of mag-
netic superconducting alloys were founded on perturba-
tion theory. Nakamura [26] and Suhl and Matthias [27] ex-
plained this effect by treating the s-d interaction Vs−d [28]
as an additive term in the total Hamiltonian, which per-
turbs a BCS superconductor [29]. Balseiro and Falicov [30]
studied a BCS superconductor perturbed by magnetic im-
purities interacting via a nearest neighbor Heisenberg po-
tential. The resulting phase diagrams comply qualitatively
with experiment.

The well-known Abrikosov-Gor’kov theory [31] (AG)
of dirty superconductors explains the strong decrease in
Tc due to magnetic impurities and also predicts gap-
less superconductivity, confirmed experimentally by Reif
and Woolf [32]. Disagreement with this approach is
observed in a number of Kondo superconductors, e.g.
La1−xCexAl2 [12], LaCe and LaGd [33] and PbCe and
InCe [34].

The AG theory was generalized to describe an in-
crease of Hc2 below the Néel temperature TN. To this end,
Ramakrishnan and Varma [35] extended AG theory to the
case, when the magnetic ions are present in large con-

centration. They solved numerically Eliashberg equations
including the effects of phonons, spin waves and elastic
scattering in order to estimate the variations of the pair-
breaking parameter. However, a detailed comparison of
their results with experimental data for the upper critical
field of SmRh4B4 have been not performed.

Hamaker et al. [36] found a good fit of the expression
for the upper critical magnetic field in Machida’s theory
for antiferromagnetic superconductors [37] to their experi-
mental data on SmRh4B4 and obtained good quantitative
agreement. However, some of the adjustable parameter
values does not comply with other experimental findings.

The effect of magnetic impurities on superconductiv-
ity is still under debate. Soto and others [38] have ex-
perimentally discovered that the superconducting fluc-
tuation effects above Tc in lanthanum are enhanced by
praseodymium impurities. Kozorezov et al. [39] have
shown, that trace concentrations of magnetic impurities
may also result in significant changes in nonequilibrium
properties of superconductors. A comprehensive review of
recent developments in this field can be found in [40].

These yet unresolved issues, as well as some shortcom-
ings of the models presented above, motivate the present
work. We continue here our previous investigation on the
phase diagrams of a BCS superconductor perturbed by a
reduced s-d interaction [41] to examine the critical mag-
netic field and the effect of an external magnetic field
H on the superconducting transition temperature Tc of
such system. To this end we use the following model
Hamiltonian

H(M) = HBCS + V (M), (1)

where
HBCS = H0 + VBCS, (2)

and
H0 =

∑

kσ

ξknkσ, (3)

with ξk = εk−μ, nkσ = a†
kσakσ and σ = ± denoting spin,

is the free fermion kinetic energy operator and

VBCS = −|Λ|−1
∑

kk′
Gkk′a†

k+a†
−k−a−k′−ak′+, (4)

is the Cooper pairing potential, whereas

V (M) = g2N−1
M∑

α=1

σzSzα, (5)

represents the reduced s-d interaction. |Λ| denotes the sys-
tem’s volume and Gkk′ is real, symmetric, invariant under
k → −k or k′ → −k′ and nonvanishing only in a thin shell
around the Fermi surface, viz.,

Gkk′ = G0χ(k)χ(k′), G0 > 0,

where χ(k) denotes the characteristic function of the set

P = {k : μ − δ ≤ εk ≤ μ + δ}, εk =
�

2k2

2m
.
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In equation (5), Szα denotes the spin operator of the αth
magnetic ion, whereas

σz =
∑

k∈P
(nk+ − nk−) ,

is the spin operator of a conducting fermion. M is the
number of magnetic impurities, N the number of host
atoms.

We assume the perturbation implemented by the lo-
calized distinguishable magnetic impurities to be a re-
duced long-range s-d interaction, which involves only the
z-components of the impurity and fermion spin opera-
tors (5). The reason for this simplification is that the
thermodynamics of the resulting Hamiltonian H(M) =
H0 +VBCS +V (M) admits a mean-field solution, the accu-
racy of which improves with decreasing impurity density.

In our approach the impurity effects depend on the
magnetic coupling constant g and impurity concentra-
tion c = MN−1. However, it does not include the
phase function, which appears in the Green’s function
method [31,42].

In Section 2 the system’s free energy F (H, β) is deter-
mined by making use of the Bogolyubov inequality [43].
The resulting approximate expression for the free en-
ergy is employed in Sections 3 and 4 to derive the equa-
tion for the critical magnetic field Hc. The credibility of
the theoretical expression for Hc, which depends on the
magnetic coupling constant g and impurity concentration
c, is subsequently verified on the experimental data for
LaCe, ThGd and SmRh4B4. Good quantitative agreement
with experiment was obtained. At low temperatures, the
critical magnetic field is found to increase with decreas-
ing temperature, similarly as in some antiferromagnetic
superconductors.

Section 5 is devoted to study of the effect of an external
magnetic field on superconducting alloys. Results of this
study are exploited in Section 6 to derive the expression
for Tc(H).

The theory presented improves earlier developments
in this field. Apart from an explanation of the reen-
trant behaviour of superconducting alloys [41], it clari-
fies the Jaccarino-Peter effect and provides good quan-
titative agreement with experimental data of several
superconducting alloys, i.e. LaCe, ThGd and SmRh4B4.

2 Upper bound to the free energy in terms
of the Bogolyubov method

The full Hamiltonian of the system

H(M) = H0 + VBCS + V (M) (6)

can be expressed in the following form in terms of mean-
field parameters ν, η:

H(M) = h(M)(ν, η) + H
(M)
R , (7)

where

h(M)(ν, η) = h̃ + h
(M)
imp +

1
2
MN

(
ν2 − η2

)
, (8)

h̃ = HBCS + κσz, κ = −gM(ν − η) (9)

h
(M)
imp = gν

∑

α

Szα +
1
2
N−1g2

∑

α

S2
zα, (10)

H
(M)
R = −1

2
N−1

∑

α

[
g
(
σz − Szα

) − νN
]2

+
1
2
N−1

∑

α

(
gσz − ηN

)2
. (11)

The Bogolyubov inequality [43]

F (H1 + H2) ≤ F (H1) + 〉H2〉H1
, (12)

with H1 = h(M)(ν, η), yields

F
(
H(M), β

)
≤ F

(
h(M)(ν, η), β

)
+

〈
H(R)

〉

h(M)
, (13)

where

〈A〉B =
TrA exp [−βB]
Tr exp[−βB]

.

The parameters ν and η will be now chosen so that they
minimize the free energy

F
(
h(M)(ν, η), β

)
= −β−1 ln Tr exp

[
−βh(M)(ν, η)

]
,

viz.,

∂F
(
h(M)(ν, η), β

)

∂ν
= 0,

∂F
(
h(M)(ν, η), β

)

∂η
= 0.

The explicit form of these equations is

ν =
g

N
〈σz〉h̃ − g

N
〈Sz〉h(1)

imp
, (14)

η =
g

N
〈σz〉h̃ . (15)

Using equations (11), (14) and (15) one obtains

〈
H(R)

〉

h(M)
= −1

2
cg2

(〈
S2

z

〉
h
(1)
imp

− 〈Sz〉2h(1)
imp

)
. (16)

The inequality Tr(ρA2) ≥ (Tr(ρA))2 , valid for any
bounded self-adjoint operator A and density matrix
ρ, shows that

〈
H(R)

〉
h(M) ≤ 0. Hence, from equa-

tions (13), (16) one obtains the relevant upper bound to
the free energy

F
(
H(M), β

)
≤ F

(
h(M)(ν, η), β

)
. (17)

According to equation (17) we ascertain that the thermo-
dynamics of the original system, characterized by H(M),
is almost equivalent to that of h(M), provided η and ν
are the minimizing solutions of equations (14) and (15).
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The consequences of disregarding a term
〈
H(R)

〉
h(M) are

discussed in Section 4.
The two equations (14) and (15) can be reduced to

a single one for ν. The only requirement is g > 0. The
general form of equations (14) and (15) is

ν = f1(ν − η) + f2(ν), (18)
η = f1(ν − η). (19)

Let g > 0, then f2 > 0. Furthermore,

η = ν − f2(ν), (20)

which yields the equation for ν:

ν = f1(f2(ν)) + f2(ν), (21)

where according to equations (18) and (19):

f1(ν) = (MNβ)−1 ∂

∂ν
ln Tr exp

[
−βh̃(ν, 0)

]
, (22)

f2(ν) = (Nβ)−1 ∂

∂ν
ln Tr exp

[
−βh

(1)
imp

]
. (23)

3 Mean-field theory of h̃

The form of the Hamiltonian h̃, given by equation (9) is
analogous to the following Hamiltonian:

HBCS(H) = H0 + VBCS − μBHσz , (24)

describing a system of electrons with attractive BCS in-
teraction in the presence of an external magnetic field H
(μB denotes the Bohr magneton). The explicit form of
the system’s free energy F (h(M)(ν, η), β) can be there-
fore derived by exploiting the Bogolyubov-Valatin trans-
formation [44,45] and the method developed in [46] for
HBCS(H).

This has been done in [41] for spin S = 1/2 and
S = 7/2 magnetic impurities perturbing the BCS-
superconductor. For further investigation, let us recall the
final form of the free energy F (S) and briefly recapitulate
the results of [41].

The free energy is given by the following equation:

F (S) = min
{Δ, ν}

{
ρF |Λ|

∫ δ

−δ

[
1
2
Δ2E−1f3

(
β, E, ξ, f

(S)
2

)

− β−1 ln
[
2 cosh(βE) + 2 cosh

(
gβMf

(S)
2

)] ]
dξ

+ M2c−1

(
νf

(S)
2 − 1

2

(
f

(S)
2

)2
)

+ F
(S)
imp + E0(Δ = 0) + ρF δ2

}
, S = 1/2, 7/2,

(25)

where F
(S)
imp is the free energy of impurity subsystem, given

by (32) and (34), E =
√

Δ2 + ξ2, ρF denoting the density
of states at Fermi level,

ρF =
mpF

2π�2
,

whereas E0(Δ = 0) denotes the ground state energy of
free fermions. Two last terms in (25) are the contribution
to the free energy density from one-fermion states, lying
outside P .

The system’s state is characterized, according to equa-
tion (25), by the minimizing solution, {Δm, νm}, of the
following set of equations for the gap Δ and a parameter
ν, describing the impurity subsystem

Δ =
1
2
G0ρ

∫ δ

−δ

Δ

E
f3

(
β, E, ξ, f

(S)
2 (ν)

)
dξ S = 1/2, 7/2,

(26)

ν = f1

(
f

(S)
2 (ν)

)
+ f

(S)
2 (ν)

=
cg

M

sinh
(
βgMf

(S)
2 (ν)

)

cosh
(
βgMf

(S)
2 (ν)

)
+ cosh (βEk)

+ f
(S)
2 (ν),

(27)

where

f3 (β, E, ξ, f2) =
sinh(βE)

cosh(βE) + cosh
(
gβMf

(S)
2 (ν)

) . (28)

The properties of a superconductor with magnetic impu-
rities can be determined by solving this set of equations,
which is supplemented by the following condition for the
chemical potential μ:

∑

kσ

Tr
(
nkσρ0

)
= n, (29)

where nkσ = a†
kσakσ is the fermion number operator and

n denotes the average number of fermions in the system.
It has been shown in [41], that this condition, takes the
form:

∑

k

[
1 − ξk

Ek
f3

(
β, Ek, ξk, f

(S)
2

)]
= n. (30)

Equation (30) resembles the BCS equation for μ and
the properties of f3 are similar to those of fBCS =
tanh(βEk/2), e.g. both functions are odd in ξk. The solu-
tion of (30) is therefore exactly the same as in BCS theory,
viz., μ = εF. Thus, we assume that in the low-temperature
scale the following relations hold:

μ = εF,
∂μ

∂T
= 0, ρ = ρF. (31)

Equations (26) and (27) clearly possess the solution Δ =
ν = 0 for all values of β ≥ 0. At sufficiently large values of
β one finds also other solutions, viz., {Δ �= 0, ν = 0}, {Δ =
0, ν �= 0}, {Δ �= 0, ν �= 0}. Accordingly, we distinguish the
following phases:
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– paramagnetic phase P with {Δm = 0, νm = 0},
– unperturbed superconducting state SC with {Δm �= 0,

νm = 0},
– ferromagnetic phase F without bound Cooper pairs

and {Δm = 0, νm �= 0}, in which impurity spins tend
to align opposite to those of conduction fermions (cf.
Eqs. (9) and (10)),

– intermediate phase D in which superconductivity co-
exists with ferromagnetism and {Δm �= 0, νm �= 0}.

We define the following temperatures corresponding to the
respective phase transitions

– Tc, 2nd order transition SC → P ,
– TPF , Curie temperature of 2nd order transition

F → P ,
– TSCD, 1st order transition D → SC,
– TFD, 1st order transition D → F ,
– TSCF , 1st order transition SC → F .

The set of equations (26) and (27) is solved numerically
and the results are presented in Section 4.

The free energy (25), as well as the equations for Δ (26)
and ν (27) strongly depend on the value of the impurity
spin S. In the present work we study the influence on
superconductivity of the following magnetic ions: Ce (S =
1/2), Gd and Sm (S = 7/2). For S = 1/2 one obtains

F
( 1

2 )
imp = −β−1 ln Tr exp

[
−βh

(M)
imp

]

= −β−1
M∑

α=1

ln Tr exp
[
−βh

(1)
imp

]

= −Mβ−1 ln [2 cosh(βgν)] +
1
2
cg2, (32)

with

f
( 1

2 )
2 (ν) =

cg

M
tanh(βgν). (33)

Accordingly, for spin 7/2 impurities

F
( 7

2 )
imp = −Mβ−1 ln 2

[
exp

[−24g2βN−1
]
cosh(7βgν)

+ exp
[−12g2βN−1

]
cosh(5βgν)

+ exp
[−4g2βN−1

]
cosh(3βgν) + cosh(βgν)

]

+
1
2
cg2, (34)

where

f
( 7

2 )
2 (ν) =

cg

MR

[
7 exp

[−24g2βN−1
]
sinh(7βgν)

+ 5 exp
[−12g2βN−1

]
sinh(5βgν)

+ 3 exp
[−4g2βN−1

]
sinh(3βgν) + sinh(βgν)

]
,

(35)

and

R = exp
[−24g2βN−1

]
cosh(7βgν)

+ exp
[−12g2βN−1

]
cosh(5βgν)

+ exp
[−4g2βN−1

]
cosh(3βgν) + cosh(βgν).

The complexity of the expressions for the free energy F (S)

and functions f1, f2, f3 increases with the impurity spin
value. It follows, that the impurity spin is the key factor
affecting the thermodynamics of superconducting mag-
netic alloys. This conclusion is complementary with the
fundamental experimental observation made by Matthias
et al. [6].

4 The critical magnetic field

The critical magnetic field HcΦ forcing a system to un-
dergo the phase transition from the Φ phase to paramag-
netic (normal) phase (P ) is given by the equation

H2
cΦ = (FP − FΦ) /2μ0, (36)

where μ0 denotes the vacuum permeability, FP and FΦ

denote the free energy of the P and Φ phase, respectively.
The free energy of the normal state can be obtained

from (25) with Δ = 0 and ν = 0, which yields:
– for spin 1/2 impurities

F
( 1

2 )
P = −2 ρF |Λ|β−1

∫ δ

−δ

ln 2 cosh
(

1
2
βξ

)
dξ

− Mβ−1 ln 2 +
1
2
cg2 + E0(Δ = 0) + ρF δ2, (37)

– for spin 7/2 impurities

F
( 7

2 )
P = −2 ρF |Λ|

∫ δ

−δ

ln 2 cosh
(

1
2
βξ

)
dξ

− Mβ−1 ln 2
[
exp

[−24βcg2M−1
]

− exp
[−12βcg2M−1

]

− exp
[−4βcg2M−1

]
+ 1

]
+

1
2
cg2

+ E0(Δ = 0) + ρF δ2. (38)

The critical magnetic field, which completely suppresses
superconductivity, (i.e. induces a phase transition SC →
P ) is given by (36) with FSC replacing FΦ. It will be
denoted as usual by Hc. The expression for FSC results
from (25) with {Δ �= 0, ν = 0}:

F
( 1
2 )

SC = ρF |Λ|
∫ δ

−δ

[
1
2
Δ2E−1f

(BCS)
3 (β, E, ξ)

− 2β−1 ln 2 cosh(βE)
]
dξ

+
1
2
cg2 + E0(Δ = 0) + ρF δ2, for S = 1/2, (39)
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(a) (b)

Fig. 1. The critical magnetic field of LaCe under varying Ce concentration for real temperature T and parameter values given
in Table 1 (a) and for the effective temperature T̃ and parameter values given in Table 2 (b). The points are experimental data
from [47].

(a) (b)

Fig. 2. The critical magnetic field of ThGd under varying Gd concentration for: real temperature T and parameter values
given in Table 1 (a) the effective temperature T̃ and parameter values given in Table 2 (b). The points are experimental data
from [48].

and

F
( 7
2 )

SC = ρF |Λ|
∫ δ

−δ

[
1
2
Δ2E−1f

(BCS)
3 (β, E, ξ)

− 2β−1 ln 2 cosh(βE)
]
dξ

− Mβ−1 ln 2
[
exp[−24βcg2M−1]

− exp[−12βcg2M−1] − exp[−4βcg2M−1] + 1
]

+
1
2
cg2 + E0(Δ = 0) + ρF δ2, for S = 7/2. (40)

The credibility of the above theoretical expressions will be
now verified on the experimental data of LaCe, ThGd and
SmRh4B4. The parameters g, G0ρF , δ, M were adjusted
to fit the experimental data. In order to perform this fit,
the set of equations (26) and (27) was solved numerically
for fixed values of the parameters g, ρF |Λ|, G0ρF , δ, M .

The minimizing solution of this set of equations was sub-
sequently substituted to the expressions for Hc or HcD

depending on which of the system’s states (SC or D) pos-
sess the smaller values of the free energy.

The critical magnetic field of LaCe, ThGd and
SmRh4B4 are depicted in Figures 1a, 2a and 3, respec-
tively. The sample solutions of the set of equations for Δ
and ν under varying temperature and impurity concentra-
tion of Ce and Gd are depicted in Figures 4–7. The agree-
ment of theoretical and experimental data is satisfactory.
The discrepancies, which increase with decreasing tem-
perature and increasing impurity concentration in case of
LaCe and ThGd, can be reduced by introducing the con-
cept of the effective inverse temperature β̃ = 1/kBT̃ . The
latter is related to the system’s real temperature by the
following expression

β̃(β, γ) = γ−1 tanh(βγ). (41)
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Fig. 3. The upper critical magnetic field Hc2 of SmRh4B4 for
the parameter values given in Table 1. The points are exper-
imental data from [36]. Hc2 is related to the thermodynamic
critical magnetic field Hc by the expression, Hc2 = κ

√
2Hc.

The Ginzburg-Landau parameter κ has been treated as the
additional adjustable parameter used to fit experimental data
and assumed to be independent in T . The value of κ providing
best fit is κ = 1.51.

Table 1. The parameter values exploited during the numerical
analysis of equations (26), (27) and (36).

Alloy c [%] M g [
√

eV] δ [eV] G0ρF

LaCe 0.00 0 0.000 0.01 0.3030
LaCe 0.55 2 0.080 0.01 0.2890
LaCe 1.00 4 0.095 0.01 0.2800
LaCe 1.50 5 0.100 0.01 0.2650
LaCe 2.00 6 0.105 0.01 0.2500
ThGd 0.00 0 0.00 0.01 0.2200
ThGd 0.10 3 0.11 0.01 0.2090
ThGd 0.20 5 0.18 0.01 0.1910

SmRh4B4 11.11 7 0.0625 0.0106 0.2540

The effective temperature results by averaging (over im-
purity positions) the single particle equilibrium density
matrix of a quantum particle in a field of randomly posi-
tioned wells, representing the screened Coulomb potential
at each impurity site [49]. Furthermore, it has been shown,
that γ is of the form

γ =
�

2

√
Mu2m−1,

with u2 denoting the 2nd derivative at well’s minimum.
In the present work γ will be treated as the adjustable
parameter.

Theoretical curves of the critical magnetic field of
LaCe and ThGd superconducting alloys with β̃ replac-
ing β in (36) are given in Figures 1b and 2b. It is clear,
that the application of the effective temperature improves
the agreement of the given model with experimental data
for LaCe and ThGd, proving that the Coulomb interac-
tions (apart from exchange interactions) between impu-
rity ions and conduction fermions shall be also taken into
account in development of superconducting alloys theory.

Table 2. The parameter values exploited during the numerical
analysis of equations (26), (27) and (36).

Alloy c [%] M g [
√

eV] δ [eV] G0ρF γ [ 10−4 eV]
LaCe 0.00 0 0.000 0.01 0.3030 0.00
LaCe 0.55 2 0.080 0.01 0.2900 1.20
LaCe 1.00 4 0.095 0.01 0.2810 1.30
LaCe 1.50 5 0.100 0.01 0.2655 1.50
LaCe 2.00 6 0.105 0.01 0.2520 1.50
ThGd 0.00 0 0.00 0.01 0.2200 0.00
ThGd 0.10 3 0.11 0.01 0.2090 0.20
ThGd 0.20 5 0.18 0.01 0.1915 0.30

The effective temperature has been also proven to be the
crucial in description of the doping dependence of super-
conducting transition temperature Tc in high-Tc supercon-
ductors [50].

In case of SmRh4B4, the concentration of magnetic
impurities (Sm3+ ions), c ≈ 11% is much larger than
in case of LaCe and ThGd. Accordingly, the agreement
with experimental data for SmRh4B4 is only satisfactory
and cannot be improved by the application of the effec-
tive temperature. This suggests, that the term

〈
H(R)

〉
h(M)

cannot be disregarded for sufficiently large c and shall be
included in the free energy computation or the depen-
dence of the Ginzburg-Landau parameter κ on T shall be
taken into account. In the case of large c, the magnitude
of exchange interaction between conduction fermions and
magnetic ions may presumably exceeds the magnitude of
the Coulomb attraction between magnetic ions and con-
duction fermions.

The graphs, depicted in Figures 1a and 2a show an
increase of the critical magnetic field at very low temper-
ature scale and for sufficiently large values of impurity
concentrations, e.g. for c = 2.0% Ce at Figure 1a and for
c = 0.20% Gd at Figure 2.

This enhancement of superconductivity also increases
with impurity spin and impurity concentration, since at
extremely low temperatures, the following relation

HcD(c = 0.20%Gd) > HcD(c = 0.10%Gd) (42)

holds.
The above observation results from the following fact.

If the solution {Δ �= 0, ν �= 0} minimizes the free energy,
then the values of HcD are larger than Hc. Accordingly,
one obtains an increase of the critical magnetic field below
TSCD, since at this temperature, the system undergoes a
phase transition SC → D and HcD becomes equal to Hc.
This conclusion may be recognized as incompatible with
physical intuition, suggesting that the external magnetic
field should gain the perturbative effect of magnetic im-
purities. As a result HcD should possess smaller values
than Hc.

An increase of the upper critical magnetic field Hc2 =
κ
√

2Hc with κ = λ/ξ, denoting the Ginzburg-Landau
parameter, has been observed in the following mate-
rials: SmRh4B4, GdMo6S8, TbMo6S8, Sn1−xEuxMo6S8,
Pb1−xEuxMo6S8, La1.2−xEuxMo6S8 [9,10]. These experi-
ments confirm the validity of inequality (42).
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(a) (b)

Fig. 4. The temperature dependence of the gap parameter Δ(T ) for LaCe and the solution of equations (26) and (27) with
S = 1/2, in which {Δm �= 0, νm = 0} (a) and {Δ �= 0, ν �= 0} (b). The parameter values are given in Table 1.

(a) (b)

Fig. 5. The temperature dependence of the gap parameter Δ(T ) for ThGd and the solution of equations (26) and (27) with
S = 7/2, in which {Δm �= 0, νm �= 0} (a) and {Δm �= 0, νm = 0} (b). The parameter values are given in Table 1.

(a) (b)

Fig. 6. The temperature dependence of the parameter ν(T ) for the solution of equations (26) and (27), in which
{Δm �= 0, νm �= 0} for LaCe (a) and ThGd (b). The parameter values are given in Table 1.

http://www.epj.org
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(a) (b)

Fig. 7. The gap parameter Δ(T̃ ) at the effective temperature T̃ and under varying impurity concentration for LaCe (a) and
ThGd (b). The parameter values are given in Table 2.

Fischer et al. [51] have pointed out that the super-
conductivity enhancement, represented by an increase of
the critical magnetic field is a result of the Jaccarino-
Peter effect [24]. This phenomenon may occur in the II-
type superconductor, in which the magnetic moments of
the impurities are antiferromagnetically coupled to that
of the conduction fermions. This interaction generates an
exchange field HJ, which acts on the spins of conduc-
tion electrons equivalently to an applied magnetic field.
Namely, breaks the Copper pairs. However, the negative
sign of the coupling between the magnetic moments and
the conduction fermions spins, determines the direction of
HJ to be opposite to that of H. Thus, an applied mag-
netic field will be compensated by an exchange field, since
the net magnetic field HT is given by H − |HJ|. A given
compound displays superconducting properties as long as
the following relation holds

−Hp ≤ HT ≤ Hp, (43)

where

Hp =
√

ρF

χP − χSC
. (44)

χP and χSC denote the magnetic susceptibility of the
normal and superconducting state. Hp, defined by (44)
is the Chandrasekhar-Clogston limiting paramagnetic
field [52,53].

The Jaccarino-Peter effect has been observed experi-
mentally in Eu0.75Sn0.25Mo6S7.2Se0.8 [25], during the in-
vestigation of the upper critical magnetic field. In par-
ticular, at low temperature scale, three subsequent phase
transitions have been observed with increasing value of an
external magnetic field, i.e. SC → P → SC → P .

In conclusion, it is worth to point out, that the mag-
netic impurities were proven to limit the superconductiv-
ity, but on the other hand, under some specific conditions,
they help the superconducting system to overcome the

destructive effect of an external magnetic field. Further-
more, the interplay between superconductivity and mag-
netism is believed to be a possible mechanism of high-Tc

superconductivity [54], since the undoped state of cuprate
superconductors is a strongly insulating antiferromagnet.
The existence of such a parent correlated insulator is
viewed to be an essential feature of high temperature
superconductivity.

In the above discussion we dealt only with the critical
magnetic field. To fully judge, if the Jaccarino-Peter com-
pensation may occur in the superconducting alloys, one
should study the effect of an external magnetic field H
on such system. This will be done in next two sections,
in which we first study the effect of H on the supercon-
ducting alloys and then employ the resulting expressions
to investigate the dependence of the superconducting crit-
ical temperature Tc on H.

5 The effect of an external magnetic field
on the superconducting alloys

In the presence of an external magnetic field H, the sys-
tem’s Hamiltonian (6) should be supplemented by the ad-
ditional terms, describing the interaction with a magnetic
field. This yields [55]:

H(M)(H) = H(M) − 1
2
g′μBH̃

∑

α

Szα − μBHσz, (45)

where g′ is the modified Landé factor [56], μB denotes the
Bohr magneton, H̃ = g0H is the effective magnetic field
at each impurity site.

The additional electron σz and impurity spin Sz oper-
ators in (45) are separated. This allows to use thermody-
namic equivalence of Hamiltonians H(M) and h(M)(ν, η),
proven in Section 2 to describe the thermodynamic prop-
erties of a BCS superconductor containing the magnetic
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impurities in the presence of magnetic field in terms of the
Hamiltonian h(M)(H). The latter is of the following form:

h(M)(H) = h(M)(ν, η) − 1
2
g′μBH̃

∑

α

Szα − μBHσz. (46)

Accordingly, the electrons and impurities are described by
the Hamiltonians h̃ and himp, respectively,

h̃ = HBCS + (κ − μBH)σz

= HBCS −
(
gMf

(S)
2 + μBH

)
σz

= HBCS − λσz , (47)

himp(H) = g

(
ν − 1

2g
g′μBH̃

) ∑

α

Szα +
1
2
N−1g2

∑

α

S2
zα

= gζ
∑

α

Szα +
1
2
g2N−1

∑

α

S2
zα. (48)

The form of equations (46) and (48) is very similar to
equations (9) and (10). It follows that, in order to include
the effect of an external magnetic field on the free energy
of a BCS superconductor containing magnetic impurities
it suffices to perform the following substitutions in (25):

κ → −λ = κ − μBH, (49)

ν → ζ = ν − 1
2g

g′μBH̃. (50)

Accordingly, the set of equations for the parameters Δ (26)
and ν (27) in the presence of the external magnetic field
take the form:

Δ =
1
2
G0ρF

∫ δ

−δ

Δ

E
f3

(
β, E, ξ, f

(S)
2 (ζ),H

)
dξ, (51)

ν = f1

(
β, E, ξ, f

(S)
2 (ζ),H

)
+ f

(S)
2 (ζ,H) , S = 1/2, 7/2,

(52)

where

f1

(
β, E, ξ, f

(S)
2 (ζ),H

)
=

cg

M

sinh
[
β

(
gMf

(S)
2 (ζ) + μBH

)]

cosh
[
β

(
gMf

(S)
2 (ζ) + μBH

)]
+ cosh(βE)

, (53)

f3

(
β, E, ξ, f

(S)
2 (ζ),H)

=
sinh(βE)

cosh(βE) + cosh
[
β

(
gMf

(S)
2 (ζ) + μBH

)] . (54)

Functions f
(S)
2 (ζ) are given by equations (33) and (35),

with ζ replacing ν.
The free energy of the BCS superconductor perturbed

by magnetic impurities and in the presence of an external

magnetic field H then reads

F (S)(H) = min
{Δ, ν}

{
ρF |Λ|

∫ δ

−δ

[
1
2
Δ2E−1f3

×
(
β, E, ξ, f

(S)
2 (ζ),H

)
− β−1 ln

[
2 cosh(βE)

+ 2 cosh
[
β

(
gMf

(S)
2 (ζ) + μBH

)] ]]
dξ

+ M2c−1

(
νf

(S)
2 (ζ) − 1

2

(
f

(S)
2 (ζ)

)2
)

+ F
(S)
imp(H) + E0(Δ = 0) + ρF δ2

}
,

S = 1/2, 7/2, (55)

where F
(S)
imp(H) are given by equations (32) and (34) after

substitution ζ → ν.

6 Critical temperature

The phase diagrams of a BCS superconductor perturbed
by magnetic impurities depicted by us in [41] show that,
the phase transition from the normal (Non SC) to a su-
perconducting state can be of the first or second order,
depending on the value of the magnetic coupling constant
g. The next two subsections are concerned with compu-
tation of the transition temperature Tc(H) for first and
second order phase transitions.

6.1 Second order phase transitions

According to Section 3, (26) for the solution {Δ �= 0, ν =
0} reduces to the BCS gap equation

ΔBCS =
1
2
G0ρF

∫ δ

−δ

ΔBCS

EBCS
tanh

(
1
2
βEBCS

)
dξ, (56)

EBCS =
√

ξ2 + Δ2
BCS.

The transition temperature T
(BCS)
c in BCS theory, is de-

fined as the boundary of the region beyond which there is
no real, positive ΔBCS satisfying (56). Below T

(BCS)
c the

solution ΔBCS �= 0 minimizes the free energy and the sys-
tem is in superconducting phase. Therefore, T

(BCS)
c can

be obtained from (56) with ΔBCS = 0, which yields [29]:

T (BCS)
c = 1.14δ exp

[
− (G0ρF)−1

]
. (57)

It should be possible to estimate the change in T
(BCS)
c ,

since the density of states enters exponentially in (57).
However, significant deviations from (57) were observed
experimentally for a number of superconductors contain-
ing magnetic impurities. This inadequacy of (57) is most
distinct for large values of impurity concentration. BCS
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(a) (b)

Fig. 8. Tc(H) graphs under varying impurity concentration for LaCe (a) and ThGd (b). The parameter values δ, g, g0, g′,
G0ρF and M are collected in Table 3.

theory is therefore incapable to describe the superconduct-
ing alloys.

Expression for transition temperature Tc of a super-
conducting alloy in the presence of an external magnetic
field for 2nd order phase transition can be computed anal-
ogously as in BCS theory. To this end, it suffices to put
Δ = 0 in equations (51) and (52). Thus, one obtains the
following set of equations for Tc = 1/(kβc):

2 = G0ρF

∫ δ

−δ

dξ

|ξ|
× sinh(βc|ξ|)

cosh(βc|ξ|) + cosh
[
βc

(
gMf

(S)
2 (ζc) + μBH

)] ,

(58)

νc =
cg

M

sinh
[
βc

(
gMf

(S)
2 (ζc) + μBH

)]

cosh
[
βc

(
gMf

(S)
2 (ζc) + μBH

)]
+ cosh(βc|ξ|)

+ f
(S)
2 (ζc), (59)

where ζc = νc − 1
2g−1g′μBH̃, νc = ν(βc), S = 1/2, 7/2.

Numerical analysis shows that in the low-temperature
scale νc(T ) is almost independent in T , viz. νc(T ) ≈
ν(0) = cg/M . Accordingly, the set of equations (58)
and (59) is solved under the assumption, that νc = cg/M .

The resulting solution for Tc(H) for S = 1/2, 7/2 un-
der varying impurity concentration is depicted in Figure 8.
The solution for Tc(H) for small c is similar to the nu-
merical result obtained by Sarma [57] of the system de-
scribed by the Hamiltonian HS = HBCS + μBHσz. His re-
sult for T

(BCS)
c (H) agrees qualitatively with Tc(H) graphs

depicted in Figure 8, since the expression for T
(BCS)
c (H)

obtained in [57] is of the similar form to (58) with ζc = 0.
The Tc(H) graphs depicted in Figure 8a show two

phase transitions for sufficiently small impurity con-
centration, i.e. c ∈ (0 at.%, 0.10 at.%) and for H ∈

(5.65 T, 7.8 T). The first phase transition (P → SC) oc-
curs at Tc1(H) and the second phase transition (back to
normal state) appears at Tc2(H). In the case of LaCe, only
one phase transition is present (SC → P ) for higher con-
centrations, but superconductor accepts larger values of
an external magnetic field. Furthermore, Tc(H) initially
increases with H.

The form of denominator on the right hand side of (58)
suggests that, the perturbative effect of magnetic impuri-
ties can be compensated by an external magnetic field. It
follows from the fact that f

(S)
2 (ζc) is odd function in ζc

and from a definition of ζc parameter, which approaches
negative values for sufficiently large H. Thus, the mag-
netic field intensity, required for the full compensation of
the perturbative effect of magnetic impurities on a BCS
superconductor has the form:

Hk = −gM

μB
f

(S)
2 (ζc). (60)

This supposition has been verified for g = 0.95
√

eV and
various impurity concentrations. The values of remaining
parameters correspond to (La1−xCex)Al2 alloy (Tab. 3).
The results, which are depicted in Figure 9, confirm the
hypothesis of the Jaccarino-Peter compensation effect in
the presented theoretical model. According to Figure 9,
the function Tc1(H) increases with H and after reaching a
maximum at H = Hk, decreases and finally falls to zero.

The number of magnetic moments, antiferromagnet-
ically coupled to conduction fermions increases with in-
creasing impurity concentration. It follows that an ex-
change field HJ approaches larger values and as a result
the compensation effect is present for larger values of H. In
the other words, the values of H, where superconductivity
appears, increase with c.

The Tc(H) graph depicted in Figure 9a resembles the
dependence of superconducting transition temperature Tc

on dopant concentration p, exhibited by high-temperature
cuprates, e.g. La2−xSrxCuO4 [58,59], YBa2Cu3Oy [60],
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Table 3. The parameter values.

Alloy x c [%] M δ [eV] G0ρF g′ g0 g [
√

eV]

LaCe –

0.00 0

0.01

0.3030

10/7 0.006

0.00
0.55 2 0.2890 0.080
1.00 4 0.2800 0.095
1.55 5 0.2650 0.100
2.00 6 0.2500 0.105

(La1−xCex)Al2

0.0010

–

1

0.01

0.2610

10/7 0.006

0.10
0.0019 4 0.2515 0.189
0.0028 7 0.2435 0.19
0.0057 8 0.2250 0.23

ThGd –
0.0 0

0.01
0.2200

2 0.004
0.00

0.1 3 0.2010 0.11
0.2 5 0.1915 0.18

(a) (b)

(c) (d)

Fig. 9. Tc(H) graphs of (La1−xCex)Al2 for g = 0.95
√

eV and under varying impurity concentration: (a) x = 0.0010,
(b) x = 0.0019, (c) x = 0.0028, (d) x = 0.0057. The values of the parameters δ, g0, g′, G0ρF and M are collected in Table 3.

Bi2−xPbxSr2Ca2Cu3O10 [60], Bi2Sr2−xLaxCuO6 [61] and
iron-pnictides [5]. Tc(p) initially increases almost linearly
in p and after reaching a maximum at optimal doping level
popt, decreases and finally falls to zero.

Analogous behavior of the superconducting transi-
tion temperature is observed, e.g. in CeRhIn5 [62],
CeCoIn5 [63], when the superconductor is under pressure.

6.2 First order phase transitions

In the case, of first order phase transitions, the assump-
tion that the gap parameter Δ vanishes at the transition
temperature does not hold. According to the results ob-
tained in [41], the superconducting transition temperature
Tc possesses three solutions (Tc1 ≥ Tc2 ≥ Tc3) for cer-
tain values of g and c. These solutions can be determined
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Fig. 10. Tc(H) graphs of (La1−xCex)Al2 for g = 0.5
√

eV and
x = 0.0010. The values of the parameters δ, g0, g′, G0ρF and M
are collected in Table 3. For H ∈ (0 T, 3.55 T) the system un-
dergoes three phase transitions with decreasing temperature,
P → SC → F → D, showing the Jaccarino-Peter compensa-
tion effect.

numerically from the following equations:

Tc1 : FP (H) − FSC(H) = 0, (61)
Tc2 : FSC(H) − FΦ(H) = 0, Φ = D, F, (62)
Tc3 : FF (H) − FD(H) = 0. (63)

The existence of Tc3 depends on the type of phase tran-
sition occuring at Tc2. If the system undergoes a phase
transition to ferromagnetic phase at Tc2, then Tc3 > 0 for
certain values of g. If Tc2 = TSCD, then Tc3 = 0 and the
system does not reenter the superconducting phase (SC
or D).

The solution of equations (61)–(63) for the parame-
ter values corresponding to (La1−xCex)Al2 [41] are de-
picted in Figure 10. For H ∈ (0 T, 3.55 T), three phase
transitions P → SC → F → D with decreasing tem-
perature are present. These phase transitions can be in-
terpreted as NonSC → SC → Non SC → SC transi-
tions, i.e. the Jaccarino-Peter compensation effect, which
has been experimentally observed in a number of super-
conducting magnetic alloys, e.g.: SnxEu1.2−xMo6S8 [64],
Eu0.75Sn0.25Mo6S7.2Se0.8 [25], CeCoIn5 [11], URhGe and
UCoGe [15].

7 Concluding remarks

Our recent work on the phase diagrams of a BCS super-
conductor perturbed by a reduced s-d interaction [41] was
continued to examine the critical magnetic field and the
effect of an external magnetic field H on the supercon-
ducting transition temperature Tc of such system. The
superconductivity enhancement, revealed by an increase
of the critical magnetic field with decreasing temperature
and increasing impurity concentration, has been found.

Good quantitative agreement of the resulting theoret-
ical expressions for the critical magnetic field with ex-
perimental data was demonstrated for LaCe, ThGd and
SmRh4B4.

The numerical analysis of Tc(H) showed that the
perturbative effect of magnetic impurities can be com-
pensated by an external magnetic field, providing the
evidence of the Jaccarino-Peter effect, which has been
experimentally observed in a number of supercon-
ducting magnetic alloys, e.g.: SnxEu1.2−xMo6S8 [64],
Eu0.75Sn0.25Mo6S7.2Se0.8 [25]. The enhancement of super-
conductivity, displayed by an increase of the upper criti-
cal magnetic field with decreasing temperature due to the
Jaccarino-Peter effect was discovered in SmRh4B4 [36],
CeCoIn5 [11], URhGe and UCoGe [15].

The enhancement of the critical magnetic field Hc

in magnetic superconductors, which is due to the inter-
play of the superconductivity and magnetic order, opens
the door to their possible industrial applications. Since
the upper critical magnetic field at absolute tempera-
ture of PbMo6S8 magnetic superconductor, i.e. Hc(0) ≈
60 T [9] doubly exceeds the corresponding value of the
high-performance, low-temperature superconducting ma-
terial Nb3Sn, which is currently widely-exploited in power
applications, e.g. in accelerators available at Fermilab,
Brookhaven, DESY and CERN [2].

Author is grateful the Institute for Theoretical and Applied
Physics for supporting his stay during the Eurasia-Pacific Sum-
mer School & Workshop on Strongly Correlated Electrons
(Turunc, Turkey, 6-17 August 2012), where part of this research
was performed and presented. I also thank Prof. K. Machida
and Dr. J. Mosqueira for their comments to the arXiv’s version
of this article.
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