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Abstract. The isotropic-to-nematic transition in a two-dimensional fluid of hard needles is studied using
grand canonical Monte Carlo simulations, multiple histogram reweighting, and finite size scaling. The
transition is shown to be of the Kosterlitz-Thouless type, via a direct measurement of the critical exponents
η and β, of the susceptibility and order parameter, respectively. At the transition, η = 1/4 and β = 1/8 are
observed, in excellent agreement with Kosterlitz-Thouless theory. Also the shift in the chemical potential of
the nematic susceptibility maximum with system size is in good agreement with theoretical expectations.
Some evidence of singular behavior in the density fluctuations is observed, but no divergence, consistent
with a negative specific heat critical exponent. At the transition, a scaling analysis assuming a conventional
critical point also gives reasonable results. However, the apparent critical exponent βeff obtained in this
case is not consistent with theoretical predictions.

PACS. 64.60.Fr Equilibrium properties near critical points, critical exponents – 64.70.Md Transitions in
liquid crystals – 64.60.Cn Order-disorder transformations – 05.50.+q Lattice theory and statistics

1 Introduction

Upon increasing density, a fluid of hard needles in two
dimensions undergoes a transition from an isotropic to a
nematic phase [1]. In the isotropic phase, the orientational
correlations decay exponentially to zero, while in the ne-
matic phase algebraic decay is observed1. In the thermo-
dynamic limit, long-range nematic order is thus absent in
both phases, and the available evidence points to a tran-
sition of the Kosterlitz-Thouless (KT) type [1,2]. In other
words, the universality class of the isotropic-to-nematic
(IN) transition in two-dimensional hard needles should be
that of the XY model [3], and one expects to find the
same set of critical exponents. For the XY model, the lat-
ter are known exactly, but their verification in a fluid of
hard needles remains elusive to this day. The purpose of
this paper is to fill this gap, using grand canonical Monte
Carlo simulations and finite-size scaling. Indeed, our simu-
lations consistently recover the XY exponents η = 1/4 and
β = 1/8, of the susceptibility and order parameter, respec-
tively. In addition, the scaling of the chemical potential
at the susceptibility maximum is in good agreement with

a e-mail: rlcvink@gmail.com
1 For this reason, the nematic phase should perhaps be

termed quasi-nematic. For notational convenience, however, we
refrain from doing so in this paper.

XY universality. Hence, our data quantitatively confirm
the KT scenario in fluids of hard needles.

We also observe that, at high density in the nematic
phase, the decay of nematic order with increasing sys-
tem size is very slow. This means that even in macro-
scopic samples a substantial degree of nematic order is
present. The same occurs in the XY model: even though
long-range magnetic order is absent in the thermodynamic
limit, finite XY systems at low temperature nevertheless
reveal considerable magnetic order. The consequences of
this have been worked out by Bramwell and Holdsworth
(BH), who conclude that the formation of magnetic order
in finite XY models is characterized by an effective critical
exponent βeff [4]. Interestingly, when we analyze our data
assuming a conventional critical point, we can also consis-
tently measure such effective exponents, which moreover
obey the hyperscaling relation. Hence, the BH scenario for
the XY model seems to be valid in fluids of hard needles
also, even though βeff obtained by us differs from the XY
value predicted by BH.

The outline of this paper is as follows. We first specify
the model details and the simulation method. Next, we
present our raw simulation data, displaying how the var-
ious observables of interest depend on the chemical po-
tential and system size. The raw data is then analyzed
using several finite size scaling methods. We end with a
discussion and summary.
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2 Model and simulation method

We consider a two-dimensional system of infinitely thin
rods of length l, henceforth referred to as needles. We em-
phasize that our model is not discretized in any way: both
the needle positions and orientations are continuous. In
what follows, l will be the unit of length. The needles are
hard, i.e. they are not allowed to overlap, and trivial fac-
tors of inverse temperature are set to unity throughout.
The simulations are performed in the grand canonical en-
semble, i.e. at constant chemical potential μ and system
area A, while the number of needles N fluctuates. The
average needle density increases with μ and this can be
used to induce the IN transition. Hence, μ is the con-
trol parameter, analogous to inverse temperature in ther-
motropic systems. We use a two-dimensional simulation
square of size A = L2 with periodic boundary conditions.
Insertion and removal of needles are attempted with equal
probability, and accepted with the standard grand canon-
ical Metropolis probabilities [5,6]. During insertion, a ran-
dom location in the system is selected and a needle with
randomly selected orientation is tentatively placed at this
location. If this needle overlaps with any of the other nee-
dles already present, the move is rejected. Otherwise, the
new state is accepted with probability

A(N → N + 1) = min
[
1,

Aeμ

N + 1

]
, (1)

with N being the number of needles in the system at the
start of the move. Similarly, during removal, one of the
needles is selected at random and deleted from the system,
and the resulting state is accepted with probability

A(N → N − 1) = min
[
1,

N

Aeμ

]
. (2)

To facilitate the efficient detection of overlap during parti-
cle insertion, a link-cell neighbor list is used [7]. The sim-
ulation data are collected as two-dimensional histograms
Hμ,L(S, N), counting how often a state with nematic or-
der parameter S and particle number N is observed (note
the dependence on μ and L). For system sizes L = 10−30,
histograms are obtained for several values of μ; the mul-
tiple histogram method [8,9] is used to evaluate proper-
ties at intermediate values. The nematic order parameter
S is defined as the maximum eigenvalue of the orienta-
tional tensor Qαβ =

∑N
i=1 (2diαdiβ − δαβ), with diα the α

component (α = x, y) of the orientation di of molecule i,
|di| = 1, and δαβ the Kronecker delta. We emphasize that
the nematic order parameter S defined in this way is an
extensive quantity. In cases where the number of particles
N is constant, it is convenient to use the normalized inten-
sive definition S� = S/N , since then one has S� = 0 and
S� = 1, in an isotropic and perfectly aligned sample, re-
spectively. However, in the grand canonical ensemble, N is
a fluctuating quantity, which itself might exhibit singular
behavior, and so this convention is not used here.

Most of the simulations were performed on Intel
DualCore processors clocked at 2 GHz. For each system

size L, around 10 histograms were collected, with μ taken
from the range ∼ 5.0–5.2. At these values, the needle den-
sity ρ ∼ 7, which is close to the transition density observed
in previous studies [1,2]. Each histogram was simulated
for ≈ 105 grand canonical sweeps [10], with a sweep being
defined as one complete renewal of the particle popula-
tion (recall that the number of particles fluctuates). The
computational effort per sweep depends on μ and L. For
μ = 5.1 and L = 10, n ≈ 2.3× 105 grand canonical Monte
Carlo attempts are required to complete one sweep; for
L = 30, this increases to n ≈ 2.7 × 106. The simulations
began with empty boxes, and the first 1000 sweeps were
discarded for equilibration.

3 Results

3.1 Observables

The observables of interest are the average needle density
and the compressibility

ρ = 〈N〉/A, χρ =
(
〈N2〉 − 〈N〉2

)
/A, (3)

the nematic density (order parameter) and the nematic
susceptibility

σ = 〈S〉/A, χσ =
(
〈S2〉 − 〈S〉2

)
/A, (4)

and the Binder cumulant

U4 = 〈S2〉2/〈S4〉. (5)

The above quantities will generally depend on μ and L,
especially in the vicinity of phase transitions.

3.2 Raw simulation data

We first present our raw simulation data. In Figure 1 the
nematic susceptibility χσ is plotted versus μ for several
system sizes. The nematic susceptibility displays a max-
imum, which becomes more pronounced as L increases.
In addition, the chemical potential at the maximum μ�

L
depends on L. The nematic density is shown in Figure 2.
We observe that σ increases monotonically with μ, while
it decreases with increasing L. The Binder cumulant U4

is shown in Figure 3. The data from the different system
sizes approximately intersect. The compressibility χρ is
shown in Figure 4. As with χσ, the formation of a max-
imum is visible, but it increases only mildly with L. In
Figure 5 the needle density is shown. We observe a mono-
tonic increase of ρ with μ, and a weak decrease of ρ with
L. In Figure 6, we show the nematic density at high values
of the chemical potential, chosen well beyond the extrema
of χσ and χρ. We observe that σ does not saturate, but
continues to decrease with increasing L.

The raw simulation data already provide evidence of
a phase transition. Based on Figure 1, the transition is
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Fig. 1. Plot of the nematic susceptibility χσ versus the chem-
ical potential μ, for several system sizes L as indicated. Clearly
visible is that χσ attains a maximum, and that the maximum
grows with increasing system size. Note also that the position
of the maximum is size dependent.
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Fig. 2. Plot of the nematic density σ, which plays the role
of the order parameter, versus the chemical potential μ, for
several system sizes L as indicated. Note that σ increases with
μ, but also that it overall decreases with increasing L. This
result is compatible with the absence of nematic order in the
thermodynamic limit.

characterized by a diverging nematic susceptibility. There
is also evidence of singular behavior in the compressibil-
ity, see Figure 4, but it is much weaker. The key observa-
tion is that the transition does not yield any finite order
parameter: even at very high chemical potential, the ne-
matic density σ does not saturate, but continues to decay
with increasing L, see Figure 6. This is consistent with
previous simulations of hard needles [1,2], and provides
further confirmation that nematic order is most likely ab-
sent in the thermodynamic limit, i.e. σ decays to zero
as L → ∞ irrespective of μ. The absence of nematic or-
der appears to be a general property of two-dimensional
liquid crystals – computer simulations of rods reveal simi-
lar behavior [11,12] – and is conform the Mermin-Wagner
theorem [13]. Note that for certain liquid crystal pair
potentials, the absence of nematic order can be proved
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Fig. 3. Plot of the Binder cumulant U4 versus the chemical
potential μ, for several system sizes L as indicated. Note that
the data from the various system sizes approximately intersect.
For increasing L, a shift of the intersection point toward higher
values of U4 is visible.
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Fig. 4. Plot of the density fluctuation (compressibility) χρ

versus the chemical potential μ, for several system sizes L as
indicated. Note the presence of the maximum, but also that
the increase of the maximum with L is much milder compared
to that of χσ in Figure 1.
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Fig. 5. Plot of the particle density ρ versus the chemical
potential μ, for several system sizes L as indicated. The overall
trend is that ρ increases with μ, and that it decreases mildly
with L.
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Fig. 6. Variation of the nematic density σ (order parameter)
versus 1/L measured at two high values of the chemical poten-
tial μ as indicated (by high is meant well beyond the maxima
in χσ and χρ). The important result to take from this graph
is that σ does not saturate at a finite value, but continues to
decrease with increasing L, consistent with the absence of true
nematic order in the thermodynamic limit.

rigorously [14]. The observation that the order parameter
vanishes in the thermodynamic limit rules out a conven-
tional critical point, leaving a transition of the KT type
as the most likely alternative.

4 Finite size scaling

4.1 KT scaling

Characteristic of a KT transition is the exponential di-
vergence of the correlation length [3]. If one starts in the
isotropic phase, and moves toward the nematic phase by
increasing the chemical potential, the correlation length
diverges as

ξ ∝ exp
(
bt−1/2

)
, t ≡ μ∞ − μ, t ≥ 0, (6)

with μ∞ the chemical potential at the transition, and
nonuniversal constant b > 0. As ξ diverges faster than
any power law, the conventional critical exponent ν of the
correlation length does not exist, but it is possible to de-
fine exponents β and η, of the nematic order parameter
σ and susceptibility χσ, respectively, by expressing these
quantities in terms of ξ

σ ∝ ξ−β, χσ ∝ ξ2−η, (7)

with KT values β = 1/8 and η = 1/4 [3]. We emphasize
that these exponents are only observed on the positive
interval 0 ≤ t < ε, with ε not too large [15,16]. In the
regime t < 0, the correlation length remains infinite, and
the exponents become functions of t.

In finite systems, the L dependence of σ and χσ in the
regime 0 ≤ t < ε is described in the context of finite size
scaling by

σ(L) = L−βf1(L/ξ), χσ(L) = L2−ηf2(L/ξ), (8)
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Fig. 7. Determination of the thermodynamic limit transition
chemical potential μ∞ assuming the KT scenario. Plotted is
the chemical potential μ�

L of the nematic susceptibility maxi-
mum versus 1/(ln L)2; the line is a fit to the KT form of equa-
tion (10). The data follow the KT prediction well, and from
the fit μ∞ ≈ 5.187 is obtained.

with scaling functions fi. Regarding χσ, this implies that
the chemical potential μ�

L of the susceptibility maximum,
see also Figure 1, must occur at the same argument of the
scaling function

L

ξ

∣∣∣∣
μ=μ�

L

= c, (9)

with c a constant of order unity. By substitution of equa-
tion (6) one easily derives that, to leading order, μ�

L is
shifted from μ∞ as [17–19]

μ�
L = μ∞ − b2

(ln L)2
. (10)

In Figure 7, we have plotted μ�
L versus 1/(lnL)2, and the

data are well described by equation (10). From the fit we
obtain μ∞ = 5.187, which is also inside the region of the
cumulant intersections of Figure 3. In order to obtain the
density ρ∞ at the transition, we have measured

ρ�
L ≡ ρ|μ=μ�

L
, (11)

as a function of L. The result is shown in Figure 8, where
we have assumed that ρ�

L is also shifted according to equa-
tion (10); by fitting we obtain ρ∞ ≈ 6.98. Note that equa-
tion (10) probably only approximately describes the den-
sity shift, as the latter is not a field variable, in contrast
to the chemical potential. The fit, nevertheless, appears
to describe the data well.

We now measure the exponent η, using the method of
Loison [20]. The basic idea is that also the Binder cumu-
lant is expressed by a finite size scaling form U4 = g(L/ξ),
with g a scaling function. Formally, this can be inverted
L/ξ = g−1(U4); substitution into equation (8) yields

χσ(L)L−(2−η) = h(U4), (12)

with h another scaling function, which could be expressed
in terms of f2 and g, but the precise form does not matter.
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Fig. 8. Determination of the thermodynamic limit transition
density ρ∞ assuming the KT scenario. Plotted is the density
ρ�

L obtained at μ = μ�
L versus 1/(ln L)2; the line is a fit to

equation (10). From the fit ρ∞ ≈ 6.98 is obtained.

Hence, if we plot χσ(L)L−(2−η) versus U4, the data from
different system sizes should collapse onto each other, pro-
vided the correct value of η is used. The result is shown
in Figure 9, where the KT exponent η = 1/4 was used.
The collapse of the data from the various system sizes is
excellent, and gives quantitative confirmation of the KT
scenario in fluids of hard needles. We observed that the
quality of the collapse quickly deteriorates when a differ-
ent exponent η is used; the numerical uncertainty in η is
around ±0.01.

Similarly, for the order parameter, we expect a data
collapse when σ(L)Lβ versus U4 is plotted, provided the
correct value of β is used. The result is shown in Fig-
ure 10, where β = 1/8 was used. Again, the collapse is
very reasonable, except in the “tails” at high values of
U4. Note, however, that here one enters the regime t < 0,
where the scaling is expected to break down. Compared to
the susceptibility, we observed that the quality of the col-
lapse is less sensitive to the precise value of β being used.
The numerical uncertainty in β is consequently larger, and
around ±0.05.

Finally, we discuss the compressibility χρ, see Fig-
ure 4. The data show the formation of a peak, which
grows mildly with increasing system size. Note also that
the maximum occurs well below μ∞ of the KT transition.
Interestingly, compared to lattice simulations of the XY
model, χρ behaves conform the specific heat [21–24]. For
KT transitions, the exponent of the specific heat is nega-
tive, meaning that it does not diverge. If we accept that
χρ is the specific heat analogue, the most likely scenario
is that the peaks in Figure 4 saturate at finite heights in
the thermodynamic limit.

4.2 Conventional critical scaling

As is well known, there is no magnetization in the XY
model in the thermodynamic limit. In finite systems, how-
ever, the KT transition is always accompanied by a rise
in magnetization. BH have shown that this effect is so
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Fig. 9. Application of Loison’s method [20] to obtain the
critical exponent η in a two-dimensional fluid of hard needles.
Plotted is χσ(L) L−(2−η) versus U4, for various system sizes L,
using the KT value η = 1/4. The collapse of the data from
the various system sizes is clearly excellent, and quantitatively
confirms the KT scenario.
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Fig. 10. Application of Loison’s method [20] to obtain the
critical exponent β in a two-dimensional fluid of hard needles.
Plotted is σ(L)Lβ versus U4, for various system sizes L, using
the KT value β = 1/8.

strong, it survives in experiments [4]. Using renormaliza-
tion group arguments, they demonstrate that the increase
in magnetization is conform a conventional power law in
temperature, with an associated effective critical exponent
βeff = 3π2/128 ≈ 0.23. More remarkably, βeff is universal.
Indeed, many experiments on XY-like systems yield ex-
ponents in agreement with the BH prediction [25]. Hence,
βeff appears to be a genuine signature of XY universality,
even though in the thermodynamic limit it has no mean-
ing.

Considering now the case of two-dimensional hard nee-
dles, it seems reasonable to expect the validity of the BH
scenario also. In the vicinity of the KT transition, the
order parameter σ rises sharply, and the slope

dσ/dμ = (〈SN〉 − 〈S〉〈N〉) /A, (13)

attains a maximum, see Figure 11. Hence, we propose to
re-analyze our σ and χσ data, but this time assuming
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Fig. 11. Plot of the order parameter “slope” dσ/dμ versus
the chemical potential μ, for several system sizes L as indi-
cated. Note the presence of the maximum, and also that the
maximum increases with system size. This means that, even
though nematic order is absent in the thermodynamic limit,
finite-sized samples still reveal a steep rise in nematic order at
special values of the chemical potential.

conventional critical scaling. The latter is easily done in
standard scaling plots [9]. For the susceptibility, one plots
χσ(L)L−γ/ν versus tL1/ν , with γ and ν the critical expo-
nents of the susceptibility and correlation length, respec-
tively; for the order parameter, one plots σ(L)Lβ/ν versus
tL1/ν , with β the critical exponent of the order parameter.
Recall that t = μ∞ − μ is the distance from the critical
point. Provided correct values of μ∞ and the critical ex-
ponents are used, the curves from different system sizes
are expected to collapse.

The results are shown in Figures 12 and 13, for the
susceptibility and order parameter, respectively2. The col-
lapse looks reasonable in both cases, and we obtain ν ≈
1.33, γ ≈ 2.33, β ≈ 0.18, and μ∞ ≈ 5.183. The esti-
mate of μ∞ is very close to the KT result of the previ-
ous section. Obviously, over the range of L available in
simulations, deviations from the logarithmic shift of equa-
tion (10) over a power law will be small. Note also that
the critical exponents obtained from the scaling plots are
consistent, in the sense that hyperscaling γ + 2β = dν is
obeyed, with d the spatial dimension; substitution of our
estimates yields d ≈ 2.02. Hence, in agreement with BH,
we find that finite systems of needles indeed give rise to ef-
fective critical exponents. However, our result βeff ≈ 0.18
seems rather far removed from the theoretical BH predic-
tion βeff,BH ≈ 0.23.

5 Discussion and summary

We have presented grand canonical simulation results of
the IN transition of hard needles in two spatial dimen-
sions. Our results are consistent with previous simulation

2 In these plots, the relative distance t = (μ∞ − μ)/μ∞ was
actually used.
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Fig. 12. Susceptibility scaling plot assuming a conventional
critical point. Shown is χσ(L) L−γ/ν versus tL1/ν , using ν ≈
1.33, γ ≈ 2.33, and μ∞ ≈ 5.183.
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Fig. 13. Order parameter scaling plot assuming a conven-
tional critical point. Shown is σ(L)Lβ/ν versus tL1/ν , using
ν ≈ 1.33, β ≈ 0.18, and μ∞ ≈ 5.183.

studies of this model [1,2], and confirm that the transi-
tion is of the KT type. The novelty of the present work
has been the combination of multiple histogram reweight-
ing [8] with finite size scaling. This combination facilitates
an accurate scaling analysis, and critical exponents can
be meaningfully obtained. Indeed, our data show that the
XY exponents η = 1/4 and β = 1/8 set in at the transi-
tion. The chemical potential and density at the transition
were found to be μ∞ ≈ 5.187 and ρ∞ ≈ 6.98, which can
be compared to Khandkar and Barma (KB) [2], who use
deposition-evaporation dynamics to study the same tran-
sition. In the KB case, the control parameter is the ratio
of deposition-to-evaporation moves κ; the latter is related
to the chemical potential via κ = exp(μ)/ρ [2]. KB re-
port κ∞ ≈ 25.8, while our estimates of μ∞ and ρ∞ yield
κ∞ ≈ 25.6, which is remarkably close.

Considering the behavior of the Binder cumulant,
see Figure 3, our data reveal an approximate intersec-
tion point, occurring close to μ∞. This behavior is con-
form XY universality [20,26,27]. Interestingly, the data
of KB do not reveal cumulant intersections [2]. Possibly,
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intersections are also present in the KB data but on a
finer κ scale, accessible only with histogram reweight-
ing [8,28]. Hasenbusch derived the very precise estimate
limL→∞ 1/U4,KT = 1.018192 for the value of the cumulant
at a KT transition [29]; simulation data also show that
the limit is approached from above with increasing L [29].
Since our definition of the cumulant uses the inverse, we
anticipate an increase of U4 with increasing L. Inspection
of Figure 3 reveals a shift of the intersection point toward
higher U4 – consistent with Hasenbusch – but our data
still deviate from the theoretical value by ≈ 3%. Presum-
ably, much larger systems are required before the limiting
value is observed, owing to strong subleading corrections
to scaling [29].

We have also analyzed our data assuming a conven-
tional critical point. The motivation was to test whether
the effective exponent βeff , predicted by BH, can also be
observed. While we do recover effective exponents obeying
hyperscaling, our estimate of βeff does not conform to the
BH prediction, the deviation being over 20%. Hence, the
most consistent description of our results is provided by
the KT scenario, in agreement with the pioneering simu-
lations of Frenkel and Eppenga [1].

This work was supported by the Deutsche Forschungsgemein-
schaft (DFG) under the Emmy Noether program (VI 483/1-1).
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