Skip to main content
Log in

The normal liquid 3He one-body momentum distribution at zero and finite temperature

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The normal liquid helium 3 one-body momentum distribution, n(k), at zero and finite temperature is evaluated by using the cluster expansion theory for the occupation probability of Ristig-Clark formalism. The lowest order constrained variational (LOCV) and the extended LOCV (ELOCV) method are used to calculate the correlation functions at zero and finite temperatures. The input inter-atomic potential is the familiar 6–12 Lennard-Jones interaction. The gap in n(k) at the Fermi surface is found to be about 0.41 comparing to 1.0 (0.72) for the noninteracting (dilute hard-sphere) Fermi gas model at zero temperature and it decreases by increasing the temperature. It is also demonstrated that the high-momentum tail of n(k) gets larger as we increase the temperature and finally, we find a good agreement between present calculated n(k) and those coming from more sophisticated approaches such as Diffusion and Green-function Monte Carlo techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.E. Sokol, R.N. Silver, J.W. Clark, Momentum distributions (Plenum Press, New York, 1989); D. Pines, P. Nozières, The Theory of Quantum Liquids (Addison-Wesley, 1989), Vol. 1; E. Feenberg, Theory of Quantum Liquids (Academic, New York, 1969)

    Google Scholar 

  2. H.R. Glyde, Exitations in Solid and Liquid Helium (Clarendon Press, Oxford, 1994); S.W. Lovesey, Theory of Neutron Scattering from Condensed Matter (Clarendon Press, Oxford, 1984)

    Google Scholar 

  3. D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995); D.M. Ceperley, M.H. Kalos, Monte Carlo Methods in Statistical Physics, edited by K. Binder (Springer, New York, 1979); S. Moroni, G. Senatore, S. Fantoni, Phys. Rev. B 55, 1040 (1997)

    Article  ADS  Google Scholar 

  4. P.M. Lam, J.W. Clark, M.L. Ristig, Phys. Rev. B 16, (1977); M.L. Ristig, J.W. Clark, Phys. Rev. B 14, 2875 (1976); F. Iwamoto, M. Yamada, Prog. Theo. Phys. 17, 543 (1957); F. Iwamoto, M. Yamada, Prog. Theo. Phys. 18, 345 (1957); M.L. Ristig, J.W. Clark, Phys. Lett. A 55, 101 (1975)

  5. E. Manousakis, V.R. Pandharipande, Q.N. Usmani, Phys. Rev. B 31, 7022 (1985); A. Fabrocini, S. Rosati, Nuovo Cimento D 1, 567 (1982); F. Flynn, Phys. Rev. B 33, 91 (1986); A. Fabrocini, V.R. Pandharipande, Q.N. Usmani, Nuovo Cimento D 14, 469 (1992)

    Article  ADS  Google Scholar 

  6. P.A. Whitlock, R. Panoff, Can. J. Phys. 65, 1409 (1987)

    ADS  Google Scholar 

  7. D.M. Ceperley, E.L. Pollock, Phys. Rev. Lett. 56, 351 (1986); E.L. Pollock, D.M. Ceperley, Phys. Rev. B 36, 8343 (1986)

    Article  ADS  Google Scholar 

  8. F. Mazzanti, A. Polls, Phys. Lett. A 263, 416 (1999); M. Modarres, Y. Younesizadeh, Nucl. Phys. A 789, 82 (2007); O. Benhar, A. Fabrocini, S. Fantoni, Phys. Rev. Lett. 87, 052501 (2001); A.N. Antonov, P.E. Hodgson, I. Zh. Petkov, Nucleon Momentum and Density Distributions in nuclei (Clarendon Press, Oxord, 1988)

    Article  ADS  Google Scholar 

  9. J.C. Owen, R.F. Bishop, J.M. Irvine, Nucl. Phys. A 277, 45 (1977); M. Modarres, J.M. Irvine, J. Phys. G: Nucl. Phys. 5, 511 (1979); M. Modarres, J. Phys. G: Nucl. Phys. 19, 1349 (1993); G.H. Bordbar, M. Modarres, Phys. Rev. C 57, 714 (1998); M. Modarres, G.H. Borbar, Phys. Rev. C 58, 2781 (1998); M. Modarres, H.R. Moshfegh, Phys. Rev. C 62, 044308 (2000)

    Article  ADS  Google Scholar 

  10. M. Modarres, J.M. Irvine, J. Phys. G: Nucl. Phys. 5, 7 (1979); M. Modarres, A. Rajabi, H.R. Moshfegh, Phys. Rev. C 76, 064311 (2007)

    Article  ADS  Google Scholar 

  11. M. Modarres, H.R. Moshfegh, K. Fallahi, Eur. Phys. J. B 36, 485 (2003)

    Article  ADS  Google Scholar 

  12. J.C. Owen, Phys. Rev. B 23, 2169 (1981); J.C. Owen, Phys. Lett. B 89, 303 (1980)

    Article  ADS  Google Scholar 

  13. S. Moroni, S. Fantoni, G. Senatore, Phys. Rev. B 52, 13547 (1995); S.A. Vitiello, K.E. Schmidt, Phys. Rev. B 46, 5442 (1992)

    Article  ADS  Google Scholar 

  14. J. de Boer, A. Michels, Physica 6, 409 (1939); R.A. Aziz et al., J. Chem. Phys. 70, 4330 (1979)

    Article  MATH  ADS  Google Scholar 

  15. M. Modarres, Int. J. Mod. Phys. B 19, 1793 (2005); M. Modarres, J. Low. Temp. Phys. 139, 314 (2005)

    Article  Google Scholar 

  16. M. Modarres, H.R. Moshfegh, Physica A 388, 3297 (2009)

    Article  ADS  Google Scholar 

  17. M. Modarres, A. Rajabi, H.R. Moshfegh, Nucl. Phys. A 808, 60 (2008); M. Modarres, Europhys. Lett. 3, 1083 (1987)

    Article  ADS  Google Scholar 

  18. W. Czyz, K. Gottfried, Nucl. Phys. 21, 676 (1961)

    MathSciNet  Google Scholar 

  19. J.W. Clark, Prog. Part. Nucl. Phys. 2, 89 (1979); E. Feenberg, Theory of Quantum Liquids (Academic Press, New York, 1969)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Modarres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modarres, M., Rajabi, A. The normal liquid 3He one-body momentum distribution at zero and finite temperature. Eur. Phys. J. B 71, 7–14 (2009). https://doi.org/10.1140/epjb/e2009-00261-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00261-9

PACS

Navigation