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Abstract The BTW Abelian sandpile model is a prominent example of systems showing self-organised
criticality (SOC) in the infinite size limit. We study finite-size effects with special focus on the statistics of
extreme events, i.e., of particularly large avalanches. Not only the avalanche size probability distribution,
but also the mutual independence of large avalanches in the critical state is affected by finite-size effects.
Instead of a Poissonian recurrence time distribution, in the finite system we find a repulsion of extreme
events that depends on the avalanche size and not on the respective probability. The dependence of these
effects on the system size is investigated and some data collapse is found. Our results imply that SOC is
an unsuitable mechanism for the explanation of extreme events which occur in clusters.

PACS. 89.75.-k Complex systems

1 Introduction

The study of extreme events has gained considerable inter-
est in recent years [1,2]. One could even define the dynam-
ics of a system as complex, if it is capable of generating
large fluctuations either autonomously or in response to
infinitesimal perturbations, so that complex dynamics and
dynamics with extreme events are intimately linked. Real
world phenomena are, e.g., earthquakes, extreme weather
events, stock market crashes, or large fluctuations in hy-
drodynamic flows such as wind gusts.

Self-organised criticality (SOC) [3] is clearly one of sev-
eral dynamical mechanisms generating extreme events. A
power law distribution for the event magnitude implies
that there is no “largest possible event” and (depending
on the precise value of the exponent) not even a well de-
fined mean event size. In a list of key issues concerning
extreme events in a given system, the quest for knowledge
about the largest possible event as well as the mean return
time of events exceeding certain thresholds would be the
most prominent ones. In addition, more details of their
statistics would be of interest, in particular the full re-
turn time distribution, from which one can learn whether
events usually appear as clusters or whether there is a typ-
ical time interval between two successive events. Indeed,
as we will show in this paper, SOC-type mechanisms in fi-
nite systems imply the existence of a “recovery time” thus
precluding clusterisation of extreme events.

In this paper we focus on the Abelian sandpile
model [4,5] as a particular SOC model in order to study
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such statistical issues. Extreme events are in this case
avalanches exceeding a predefined large threshold. This
is motivated by the fact that also in most real world phe-
nomena we would call an event “extreme”, if it exceeds a
certain threshold, usually related to damage, casualties, or
financial losses. Whereas for infinite system size the sand-
pile system is critical and all results concerning extreme
events can easily be derived, we are particularly interested
in finite-size effects. Again, the motivation stems from the
fact that real world phenomena occur in systems of large
but finite size, with a finite energy content, such that in-
deed it is conceivable that, e.g., magnitudes are restricted,
so that there might exist the strongest possible earthquake
or the highest possible wind speed in a storm.

In the following sections we will study the avalanche
statistics of the sandpile model as a function of the sys-
tem size. Our most relevant result will be a strong sup-
pression of short recurrence times of large avalanches. We
will show that this suppression is not related to a cutoff of
the power law for the magnitude distribution, but instead
to the inhibitive interaction of large successive avalanches
in a finite system. Therefore, the finiteness of the system
does not only cause a finite mean avalanche size and a
finite maximal avalanche size, but also a non-Poissonian
recurrence statistics with a typical timescale for the return
of extreme events.

2 Avalanche size distribution

For our analysis, we use the Bak-Tang-Wiesenfeld model,
which is a two-dimensional Abelian sandpile model defined
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Figure 1. Probability distribution p(s) of the avalanche sizes
in the BTW model of system size L = 32, shown in log-log
scale. A total of N = 107 simulated avalanches were used.
The glitch in the data at s = 100 was introduced to mark the
onset of logarithmic binning used to smooth the histogram.
The straight line shows the power law.

on a square lattice with L2 sites [4,5]. For each site, an in-
teger variable z denotes the number of sand grains. Single
grains are added to randomly chosen sites of the system.
If the number of grains at a site (x, y) exceeds zc = 3,
the site will topple and distribute sand grains to the four
nearest neighbours according to the following rules:

⎧
⎨

⎩

z(x, y) → z(x, y) − 4
z(x ± 1, y) → z(x ± 1, y) + 1
z(x, y ± 1) → z(x, y ± 1) + 1.

(1)

The boundary is open and dissipative, i.e. if (x, y) is a
boundary site with only three or two nearest neighbours,
one or two grains will leave the system. If as a result of
the added sand grain a neighbour becomes unstable, it
also topples, starting an avalanche during which no new
sand grains are added to the system. The avalanche stops
when all sites are stable again, its size is defined as the
total number of topplings that have taken place. Contrary
to the recommendation made by Dhar to minimise finite-
size effects [6], the avalanches starting near the boundary
were not omitted from the analysis.

As can be seen from Figure 1, the probability distri-
bution p(s) of avalanche sizes does indeed obey a power
law, whose exponent has been estimated by a number of
authors as lying between –1.05 and –1.293 depending on
the system size used in the simulations [7–10]. For large
avalanche sizes however, the finite system size leads to
a truncation of the power law. This cutoff appears at
avalanche sizes of approximately L2/2.

The truncation also leads to the existence of a mean
avalanche size. Our simulations show that this mean scales
with L1.9. Using this result, the scaling of the cross-over to
the truncation regime can be verified by a rough approx-
imation. Setting the avalanche size probability to zero for

Figure 2. Spread of the maximal avalanche for L = 7. The
height of sand grains at each system site is colour coded. Each
square represents one sweep in the toppling algorithm (during
a sweep all unstable sites topple simultaneously).

sizes outside the power law regime, the mean avalanche
size can be calculated as

〈s〉 �
∫ L2

2

0

s · p(s)ds ∝ L1.8 for p(s) ∝ s−1.1. (2)

Considering the crudeness of this approximation, its result
coincides nicely with the empirical result. This demon-
strates the mutual consistence of the empirical scaling
laws for p(s), the cut-off of the power law, and the mean
avalanche size.

Another consequence of the dissipation of sand grains
over the border of the system, which cannot directly be
seen from the probability distribution of avalanche sizes,
is the existence of a maximal avalanche size which can be
calculated analytically. For the maximal avalanche, the
probability of a toppling causing other sites to become
unstable has to be maximised. This is achieved by a uni-
form starting distribution of three grains on each site – the
maximum, while still retaining the stable state of the sys-
tem – with a single extra grain placed in the middle of the
system to start the avalanche, ensuring that the first sand
grain leaves the system at the latest possible moment. Fig-
ure 2 shows the evolution of the resulting avalanche dy-
namics from the initial configuration, splitted into sweeps
of simultaneously unstable system sites. Two phases of
the avalanche become visible. At first, the spread of top-
pled sites is small enough not to reach the border of the
system so the number of topplings per sweep increases as
a sequence of squares. When the spread of the avalanche
reaches the border, the number of sites in this sequence of
squares that lie outside the border as well as the number
of sites which do not become unstable again due to a lack
of sand grains re-entering the system from outside have to
be subtracted. Summing up these contributions, we arrive
at the following formula for the maximal avalanche in a
system of size L (L odd):

smax =
L∑

i=1

i2 − 4

L−1
2∑

i=1

i∑

k=1

k − 4

L−3
2∑

i=1

i∑

k=1

k

=
1
6
L(L + 1)(L + 2). (3)

For even system sizes, the single extra grain is placed at
one of the middle sites of the system, resulting in a slightly
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different calculation of the maximal avalanche because of
the lower degree of symmetry. The result, however, is the
same as for odd system sizes, equation (3).

The existence of characteristic avalanche sizes such as
the maximum and the mean shows that the influence of
the finite system size has a major impact on the scale-free
behaviour of avalanches in the BTW model. The system
size hence introduces scales into the statistics of extreme
events.

3 Extreme value statistics

The mathematical theory of extreme value statistics con-
siders the maxima of blocks of n successive events. Under
the assumption that successive events are independent of
each other, the distribution of block maxima follows the
universal Generalised Extreme Value distribution (GEV)
as described by equation (4), which comprises the Fréchet
(ξ > 0), Gumbel (ξ = 0) and Weibull (ξ < 0) distributions
distinguished by the shape parameter ξ,

G(z) = exp

{

−
[

1 + ξ

(
z − μ

σ

)]− 1
ξ

}

. (4)

The type of extreme value statistics itself is used for the
extrapolation from the statistics of observed event magni-
tudes during past observation periods to the statistics of
unobserved event magnitudes and future, much longer ob-
servation periods. Even though this theory is only valid for
independent events with a stationary distribution, rapidly
decaying correlations are not relevant for big block sizes
n [11].

Avalanches in the Abelian sandpile model with infi-
nite system size are power law distributed. Evaluating the
criteria for the domain of attraction of each of the GEV
families [12], their block maxima should be Fréchet dis-
tributed. However, as shown in Section 2, the finite sys-
tem size introduces both a truncation of the power law
and a maximal avalanche. The expected distribution of
the block maxima in the presence of such an upper bound
would then be of the Weibull family.

Exemplary block maxima distributions for L = 64 and
two different block sizes n are displayed in Figure 3. As
can be seen, for the block size n = 100, when many smaller
avalanches still within the power law regime are consid-
ered, the shape parameter indicates the expected Fréchet
distribution, while for the larger block size n = 8000, the
maxima instead follow a Weibull distribution. This tran-
sition is better visible in Figure 4, where the dependence
of the shape parameter ξ on the block size n is shown.

The GEV distributions are expected under the con-
dition of the independence of successive avalanches and
the stationarity of their distribution. If these conditions
are violated, other distributions might be found. Our fits
demonstrate that indeed our empirical distribution is well
described by the members of the GEV. This is not un-
expected. Since stationarity is a prerequisite of the non-
equilibrium steady state of SOC, this is not a concern. The
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Figure 3. Histograms of the block maxima for L = 64 and
block sizes n = 100 (upper) and n = 8000 (lower) with the
corresponding GEV distribution (smooth curves).

10
1

10
2

10
3

10
4

10
5

10
6

−0.1

−0.05

0

0.05

0.1

block size n

sh
ap

e 
pa

ra
m

et
er

 ξ

Figure 4. Dependence of the shape parameter ξ on the block
size n in a semilogarithmic scale for the system sizes L = 16
(lower family of values) and L = 64 (upper). The error bars
represent the 95% confidence level.
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Figure 5. Probability distribution of the recurrence time of
avalanches of size s ≥ s0 = 1120 for L = 32 and N = 109

simulated avalanches. For clarity the recurrence time axis was
truncated at t = 2000 but the largest recurrence time occurring
in the simulation was t = 6279. The inset shows the same
probability distribution for s0 = 1 in a semilogarithmic scale.

analysis in Section 4 shows that small avalanches follow
a Poissonian recurrence time distribution and are indeed
independent. While larger avalanches are correlated, these
correlations are shorter than the large block sizes used for
the extreme value statistics and are therefore not relevant,
justifying the application of this theory.

4 Recurrence time

In an infinite system, the probability that two consecutive
avalanches start close enough to influence each other is
very small. Therefore it is very plausible that in this case
the avalanches can be considered as independent events.
Other arguments in favour of independence have been
published [13] and verified by simulation [14]. The recur-
rence time of avalanches equal to or exceeding a given
threshold s0, measured as the number of added sand grains
between their occurrence, is therefore expected to be dis-
tributed exponentially as p(t) = τ−1 exp(−t/τ), where τ is
the mean recurrence time which depends on the avalanche
size under study.

Analysing the recurrence time of avalanches without
a threshold s0, the Poissonian distribution is indeed ob-
served, as shown in the inset of Figure 5. However, for
larger thresholds s0, finite-size effects appear. Figure 5
shows the probability distribution of recurrence times for
L = 32 and for large s0. It accurately follows the expected
exponential distribution for large enough times t, but the
probability of shorter times is significantly reduced. This
implies that the system becomes undercritical by an ex-
treme event and needs to build itself up to the critical
state before avalanches of a similar size can again occur,
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Figure 6. Data collapse of recurrence times of large
avalanches in systems of different sizes equally spaced between
L = 16 to L = 72 (log-log scale was used to emphasize small
times). The curves have been shifted horizontally by a factor
of L0.6. A simulation of a total number of N = 108 avalanches
was used.

showing that the finite system size not only prevents to-
tal scale-freeness, but also causes a correlation between
extreme avalanches.

In order to investigate the dependence of these cor-
relations on the system size and also on the definition
of extreme avalanches, we search for a rescaling such
that a data collapse is achieved. Implementing Kac’s
Lemma [15] it is possible to calculate the mean recurrence
time τ = N/nlarge, where N is the total number of added
sand grains and nlarge is the number of avalanches equal
to or exceeding the chosen threshold s0. Measuring the
recurrence time in units of τ(L), the exponential part of
the distributions of recurrence times for different system
sizes L collapses rather well. Any remaining deviations are
due to the normalisation constraint that spreads the influ-
ence of finite-size effects beyond small recurrence times.

The shape of the finite-size effect for small recur-
rence times is determined by the threshold s0 defining
extreme avalanches. The larger s0, the stronger the deple-
tion around t = 1 is. For a data collapse of the relevant
part of the probability distributions, appropriate thresh-
olds s0(L) have to be chosen. This is not quite enough for
a full data collapse, the data also has to be shifted along a
horizontal direction. This does not maintain the normal-
isation constraints, but no valuable information is lost in
the process as the original curves can be easily restored.

An example of the resulting collapsed probability
distributions can be seen in Figure 6, where one such
sequence s0(L) has been determined empirically, which
under rescaling collapses in the region of small t. To de-
termine this sequence, first, a value for s0(L = 16) has
been chosen. Then, for L �= 16, threshold values have been
varied until values were found such that the shifted curve
collapses onto the curve for L = 16. By this, a series of



A. Garber and H. Kantz: Finite-size effects on the statistics of extreme events in the BTW model 441

10
1

10
2

10
2

10
3

10
4

10
5

system size L

th
re

sh
ol

d 
s 0

Figure 7. Three different series of thresholds leading to dif-
ferent strengths of the finite-size effect in large avalanches and
their dependence on the system size L in a log-log-scale. The
uncertainty of the vertical position is of the order of the sym-
bol size. The straight line illustrates a power law of exponent
2.87.

thresholds s0(L) has been determined which all collapse
onto a single curve in the range of short recurrence times.

Figure 7 shows three series of thresholds s0(L) for sys-
tem sizes L = 16 to L = 128 corresponding to three
distinct shapes of the finite-size effect on the probability
distribution of recurrence times. These series of thresh-
olds all depend on the system size as a power law with
an exponent of α ≈ 2.87± 0.07. The error stems from the
estimation of the determination error of the thresholds
s0(L).

5 Interdependence

The results until now being purely empirical, a more thor-
ough understanding of the mechanisms leading to the ob-
served correlations between large avalanches is needed,
specifically of the parameter dependence s0(L) leading to
the observed power law of Figure 7.

The first hypothesis about how the threshold values
s0(L) are controlled by L is based upon the avalanche
probabilities. It might be that independently of L the
thresholds s0(L) lead to the same event rate, i.e. to the
same probability for an avalanche to exceed the thresh-
old. In order to check this, the mean recurrence times
of avalanches exceeding the thresholds s0(L) are plot-
ted versus the system sizes (Fig. 8). As can be seen, the
dependence is nontrivial, so thresholds for different sys-
tem sizes that lead to the same probability of an extreme
avalanche occurring do not lead to the same shape of the
finite-size effect.

If, on the other hand, the thresholds s0(L) were deter-
mined in such a way that the probability of an equal-to-
threshold avalanche were the same for all system sizes L,

Figure 8. Mean recurrence time for the three different series
s0(L) in a log-log scale. The inset shows the avalanche size
probability distribution for different system sizes L ranging
from L = 16 to L = 1024.
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Figure 9. Dependence of the series of thresholds s0(L) on the
maximum avalanche size smax(L).

then the series would be given by a set of s-values deter-
mined by the intersection of the horizontal line in the inset
of Figure 8 with the probability distributions. We see that
this is not plausible, since for small systems the threshold
would be far in the cutoff regime beyond the power law,
whereas for large L it were inside the power law regime,
where no finite-size effects are to be expected.

Comparing the empirical power law scaling s0(L) ≈
L2.87±0.07, and the numerical fit to equation (3) for our
range of system sizes, smax ≈ L2.93, one might also sur-
mise that the thresholds all lead to a consideration of only
those avalanches whose size surpasses a given percentage
of the maximal avalanche. Figure 9 shows indeed a good
agreement with a linear dependence of the threshold s0

on the maximum avalanche smax despite deviations for
the smaller system sizes. Therefore, a simple criterion for
the determination of the thresholds was found, but the de-
tailed mechanisms leading to the precise series s0(L) still
remain unclear.
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Hence, a more involved reasoning is needed. The
suppression of short recurrence times means that large
avalanches repel each other. This repelling mechanism
might have its origin in the spatial overlap between two
consecutive avalanches that exceed the chosen threshold
s0, defined as the number of system sites toppling dur-
ing both avalanches. We determined this quantity numer-
ically. It obeys an approximately Gaussian statistics, but
the mean overlap increases with system size for each series
of s0(L), implying that the influence of the overlap does
not seem to be the determining factor even after normal-
isation to the total number of system sites.

On the other hand, a 2D probability distribution of
overlap and recurrence time could be better suited to
investigate a possible dependence. If those two quantities
were uncorrelated, this distribution would be the prod-
uct of a Gaussian in horizontal direction and the modified
exponential distribution in vertical direction with the ob-
served finite-size suppression of small recurrence times.
The right contour in Figure 10a shows this direct prod-
uct of the one-dimensional distributions. For comparison,
the other two contours show the observed empirical distri-
butions for different parameter values s0. The finite-size
deviation for small recurrence times is visible for each con-
tour, but the symmetry of the Gaussian distribution is vi-
olated as the deviation is significantly increased for large
values of the overlap. As can be seen from Figure 10a, this
increase depends on the value of s0. Figure 10b indicates
that a similar correlation between large overlaps and small
recurrence times is a selection criterion behind the thresh-
olds s0 leading to the same shape of the finite-size effect
on recurrence times.

Interestingly, in Figure 10a, the bigger the avalanches
considered, the smaller the depletion of recurrence times
for a large overlap is. Since large avalanches should be
more influenced by the finite system size, this seems at
first counter-intuitive. However, the analysis of the overlap
disregards avalanches of size s < s0 occurring between two
avalanches exceeding this threshold. These smaller events
redistribute grains of sand in the system thus connecting
avalanches without any actual overlap and decorrelating
those with a large overlap. The higher the threshold s0,
the larger the mean recurrence time, allowing more small
events to take place in between. This interrelation between
overlap and mean recurrence time makes it difficult to gain
a more thorough understanding of the mechanisms leading
to the empirical series s0(L).

6 Conclusion

We have shown that the finite size of the BTW sandpile
has a strong influence on the key properties of extreme
events. The well known violation of the scale invariance of
avalanche sizes is relevant in this context since it ensures
the existence of both a mean and a maximal avalanche size
that scale with the system size as power laws. In addition,
large avalanches are not independent but repel each other,
resulting in a significantly lowered probability of small re-
currence times depending on the chosen threshold for large
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same magnitude of the finite-size effect for different L.

Figure 10. Contour plots of the 2D probability distribution
of overlap and recurrence time.

avalanches. For very large thresholds, the recurrence time
distribution is strongly peaked, introducing a typical time
interval in between two successive extreme events.

Several different hypotheses about the mechanism de-
termining the shape of this finite-size effect were tested.
We found that the thresholds do not lead to the same
probability of obtaining a large avalanche exceeding the
threshold. However, within the accuracy of the simulation
and analysis, the thresholds are at a given fraction of the
maximal avalanche size. The overlap between avalanches
exceeding the threshold may also play a role, but as
two above-threshold avalanches do also interact through
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smaller sub-threshold avalanches, this cannot be analysed
in a meaningful way.

The non-Poissonian return time statistics found in this
SOC model causes a more homogeneous distribution of
extreme events over time. It strongly suppresses clusters
of extreme events. This is in clear contrast to systems
exhibiting long range correlations [16], where the return
time statistics was found to be a stretched exponential or
Weibull distribution with the enhancement of clustering
of events. Thus, the return time statistics might be used
to infer (or at least exclude) certain dynamical mecha-
nisms for the creation of extreme events. More precisely,
we conclude that phenomena where extreme events tend
to form clusters in time cannot be caused by SOC-type
mechanisms.
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