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Abstract Hadronic box diagrams pose a significant source
of radiative corrections to lepton scattering and β-decay
measurements, yet their calculation remains highly model-
dependent. Two-photon exchange is a box diagram generally
relevant to most lepton scattering experiments, and is directly
detectable via multiple observables. Single-spin asymmetries
(SSA) are sensitive to the imaginary part of the TPE ampli-
tude, while the ratio of e+/e− elastic scattering cross sec-
tions is sensitive to the real part of the TPE amplitude. While
SSA measurements have been reported for several complex
nuclei, measurements of the e+/e− ratio exist only for the
proton. Proposed here is a measurement of the e+/e− ratio on
4He, a feasible nuclear target for which the ratio’s deviation
from unity due to TPE is expected to be on order of 1–2%.
Choosing a low Z nucleus minimizes Coulomb distortions,
which could greatly overwhelm TPE for heavier nuclei. The
proposed 19-day program, including measurements at three
kinematic settings between 0.3 < Q2 < 0.4 GeV2, would
be made possible by the addition of a positron source at Jef-
ferson Lab.

1 Introduction

Lepton scattering is a powerful and ubiquitous tool for under-
standing hadronic structure. The scattering of charged lep-
tons off nucleons and nuclei is commonly described in the
Born approximation, where the interaction is mediated by the
exchange of a single virtual photon, depicted in Fig. 1a. This
mechanism is well understood and allows straightforward
theoretical interpretation of experimental data. However, the
probability for a purely one photon exchange (OPE) interac-
tion to occur is zero [1]. Higher-order interactions, although
suppressed by additional powers of the fine structure con-
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stant α ≈ 1/137, contribute to the scattering process. It is
common to correct experimental measurements for some of
these radiative effects using theoretical calculations [1–3].

One such higher-order interaction is two-photon exchange
(TPE), depicted in Fig. 1b. TPE is part of a larger class of so-
called hadronic box diagrams which involve the exchange
of two gauge bosons. In addition to TPE in electron scat-
tering, hadronic box diagrams involving Z and W bosons
pose a significant source of radiative corrections to β-decay
measurements used to extract CKM matrix elements [4,5].
However, the calculation of box diagrams is difficult, as it
requires integrating over all possible intermediate hadronic
states excited by the virtual photon, resulting in large uncer-
tainty and model-dependence. For this reason, TPE is not
accounted for in traditional radiative corrections to elec-
tron scattering (aside from a contribution required to can-
cel infrared divergences in soft bremsstrahlung). It has been
hypothesized that TPE could be responsible for the discrep-
ancy between polarized and unpolarized measurements of
the proton form factor [6,7], prompting renewed interest in
experimental measurements of TPE.

While absolute cross sections are dominated by OPE,
some observables are sensitive to interference between the
OPE and TPE amplitudes, giving rise to small but measurable
effects. Constraints on theory can be maximized by perform-
ing complementary measurements of multiple TPE observ-
ables. Single-spin asymmetries (SSA) in the scattering of
transversely polarized electrons probe the imaginary part of
this interference. The real part of the interference can be
probed by measuring the ratio of positron to electron elas-
tic cross sections. Following the notation of Ref. [8], the e±
elastic scattering amplitude can be expressed as
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Fig. 1 Leading- and
higher-order contributions to
lepton-nucleus scattering
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where e and Z are the charge of the lepton and target, Ceven

is the contribution from charge-even radiative effects, A1γ

and A2γ are the OPE and TPE amplitudes, and Abrem,e and
Abrem,Z are the lepton and hadron bremsstrahlung ampli-
tudes. As the interference term between OPE and TPE is
weighted by the lepton charge, this contribution will have
opposite sign for incident electrons and positrons. This gives
rise to an asymmetry in the ratio of positron to electron cross
sections:

R = σ(e+)

σ (e−)
≈ 1 − 2

(
δ2γ − δbrem,eZ

1 + δeven

)

, (2)

where δeven is the charge-even radiative correction factor,
and δ2γ and δbrem,eZ are the fractional corrections for TPE
and bremsstrahlung. The charge-even and bremsstrahlung
terms can be accounted for using traditional radiative cor-
rection calculations. Thus, a measurement of the positron to
electron cross section ratio σ(e+)/σ (e−) (abbreviated in the
following as e+/e−) is directly sensitive to the TPE contri-
bution δ2γ .

2 TPE with nuclei

Multiple collaborations have reported SSA measurements
from nuclei, which arise from the imaginary part of the
TPE amplitude. These measurements include 4He, 12C, 40Ca,
48Ca, and 208Pb by the PREX/CREX collaborations [9,10],
28Si and 90Zr by the A1 collaboration [11], and 12C and 27Al
by the Qweak collaboration [12].

Theoretical calculations to compare with these data must
address two phenomena. The first is an integration over all
possible intermediate hadronic states that can be excited by
the virtual photon. Some calculations have applied the opti-
cal theorem to account for inelastic excitations of the inter-
mediate hadron in forward scattering [13,14]. Second, the

static Coulomb field of the nucleus leads to the exchange
of many soft photons, referred to as Coulomb distortion.
This has been accounted for in 4He and 208Pb by numeri-
cally solving the Dirac equation [15], although this calcula-
tion does not account for inelastic intermediate states. While
the theoretical calculations are largely in agreement for light
and intermediate nuclei, no calculation is able to reproduce
the experimental SSA for 208Pb, which is far smaller than
predicted. A very recent calculation [16] has attempted to
simultaneously account for both excited intermediate states
and Coulomb distortion, however a stark disagreement with
data remains. Further theoretical work is required to resolve
this discrepancy.

The real part of the TPE amplitude, accessible via the
e+/e− ratio, has been studied in protons. Measurements of
the ratio of positron-proton and electron–proton elastic cross
sections were performed as early as the 1960 s [17–23]. More
recent, high-precision measurements have been performed
by CLAS [8], VEPP-3 [24], and OLYMPUS [25], motivated
by the proton form factor discrepancy at high Q2. The results
were inconclusive. On the one hand, the data show a small
(order∼ 1%) deviation from unity with the expected ε depen-
dence predicted by theoretical estimates of TPE [26,27].
However, the new data are limited to Q2 < 2 GeV2/c2,
where the form factor discrepancy is small. A goal of future
proton studies is to extend the kinematics of charge asym-
metry measurements into higher Q2 and lower ε, where the
discrepancy is larger and TPE contributions would need to
be much greater in order to produce it.

There currently exist no measurements of the e+/e− ratio
on nuclei. An early calculation of TPE with 4He [28,29] pre-
dicted that the effect would cause the e+/e− ratio to deviate
from unity by approximately 2% for most scattering angles,
although the effect rapidly decreases as the scattering angle
goes to zero. Measuring the e+/e− ratio from a complex
nucleus would provide a benchmark for theory that is com-
plementary to existing SSA measurements.

3 Proposed measurement

A positron source that could inject positrons into Jefferson
Lab’s CEBAF accelerator would facilitate a first measure-
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Table 1 Key parameters of the Jefferson Lab spectrometers that could potentially be used for the measurement

Spectrometer Resolution (δp/p) Minimum momentum (GeV) Acceptance (msr)

HRS (Hall A) 2 × 10−4 0.8 6

HMS (Hall C) 8 × 10−4 0.5 6

SHMS (Hall C) 1 × 10−3 2.0 5

ment of the real part of TPE in elastic scattering from nuclei.
We propose a measurement of the e+/e− elastic scattering
ratio from a nuclear target (see following section for a dis-
cussion on choice of nucleus). Separating elastic events from
low-lying nuclear excited states would required a spectrome-
ter with high momentum resolution. Both the high-resolution
spectrometers (HRS) in Hall A [30], and the high-momentum
and super-high-momentum spectrometers (HMS, SHMS) in
Hall C, have sufficient resolution. The specifications of these
spectrometers are shown in Table 1.

Each of these spectrometers have small acceptances, cov-
ering solid angles of a few millisteradians (msr). As such,
choice of spectrometer offers no significant advantage in
expected data rates. Given the minimum central momentum
of the SHMS, a minimum beam energy of 2 GeV would
be required to employ both Hall C spectrometers. This was
considered in the proposed runplan.

In the following, the maximum beam current for both elec-
trons and positrons is assumed to be 1 μA. This is a conser-
vative estimate, as the existing high electron beam currents
offered by Jefferson Lab will not necessarily be limited by
technical challenges associated with the addition of a new
positron source. As this measurement is fully unpolarized,
limitations on the maximum polarization of the beam or tar-
get need not be considered.

3.1 Nuclear target

As the e+/e− ratio has only been measured on the pro-
ton, a measurement on any A > 1 target would be a first
observation. It could be argued that performing the mea-
surement on a heavy nucleus, for which a large discrepancy
between data and theory has been observed in SSA measure-
ments, would provide a useful new benchmark. However, in
a heavy nucleus Coulomb distortion, which is proportional
to Z , becomes a large effect. The size of Coulomb distortion
can be approximated as an additional factor (1 + δF ) using
the so-called Feshbach correction [3,31]:

δF = Zαπ
sin(θ/2) − sin2(θ/2)

cos2(θ/2)
(3)

Even for scattering angles around θ ≈ 15◦, this approxi-
mation yields δF > 20% for 208Pb. Thus, the higher-order
effects observed in the e+/e− ratio would be dominated by

Fig. 2 4He form factor data used for rate estimates. Data taken from
Ref. [32]

Table 2 Proposed run plan for e+/e− ratio measurements from 4He at
three kinematic settings

E (GeV) θe± (◦) Q2 (GeV2) Days

2.2 14.302 0.30 1

2.2 15.454 0.35 3

2.2 16.529 0.40 15

Coulomb distortion. In the interest of pursuing a clean mea-
surement of TPE, only light nuclei will be considered.

Helium (4He) offers a natural choice for several reasons.
It is feasible to implement as a scattering target, and in fact is
a commonly used target at Jefferson Lab. Based on previous
implementations of high-density gaseous helium targets at
Jefferson Lab [30], a target density of at least 1 g · cm−2

can be achieved (in the following, this is adopted as the
nominal value). Helium has a large first excited state energy
(E∗ = 20.21 MeV), allowing the elastic peak to be cleanly
isolated by the spectrometers. At scattering angles around
θ ≈ 15◦, the effects of Coulomb distortion (from Eq. 3) are
expected to be on order of 0.5%. It is also a spin-0 nucleus,
which simplifies theoretical calculations. The calculations
of Refs. [28,29] predict that TPE would give rise to a 1–2%
deviation from unity in the e+/e− ratio on 4He.

3.2 Run plan

Given the discussion in the previous sections, we propose a
measurement of the e+/e− ratio on 4He. The runplan pro-
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posed in Table 2 requires 19 days to perform measurements
at three kinematic settings to approximately 0.1% statistical
precision on the ratio. All kinematic settings have Q2 ≤ 0.4
GeV2 and ε > 0.9. While it may be preferable to perform
the measurements at kinematics where the effects of TPE
are expected to be larger, the rapid decrease of nuclear form
factors with Q2 limits the phase space accessible without
prohibitively long beam time.

To estimate the expected experimental rates, a Monte
Carlo simulation of high-resolution, small-acceptance spec-
trometers was used. The cross section was calculated using
4He form factor data from Ref. [32], shown in Fig. 2. For
each kinematic setting, the beam time has been estimated
to achieve approximately 0.1% statistical uncertainty on the
e+/e− ratio. As is typical for Jefferson Lab, a factor of 2 has
been included in the beam time to account for 50% beam
efficiency. It is anticipated that in this era of Jefferson Lab
physics, Hall A will only have one operational HRS. There-
fore, should this measurement be carried out in Hall A, the
running time would need to be doubled to achieve the same
statistical precision.

3.3 Systematics

As the effect of TPE at the proposed kinematics is expected
to be on order of a percent, control of systematics will be
critical to these measurements. It is a significant benefit that
the observable is a cross section ratio using the same nuclear
target and spectrometer, resulting in the cancellation of many
systematic effects.

To first order, target density normalization cancels in
cross section ratios using the same target. However, possi-
ble long-scale variations of the target parameters could mean
changes in target density. Such effects could be mitigated
by switching between electron and positron beams on very
short timescales. From a technical perspective, this may not
be possible. In the extreme case where the entire run is split
between an electron and positron period, the target parame-
ters would have to be carefully monitored to ensure stability.

Ideally, the spectrometer optics for electrons and positrons
would be identical up to a sign, resulting in the cancellation
of spectrometer acceptance. In practice, this is not always
the case. Small changes in the optics between spectrome-
ter polarities could create different acceptances for electrons
and positrons. This would require careful study and possible
correction.

Lastly, while accounting for beam or target polarizations
can add significant uncertainties to spin-based measurements
of TPE (such as SSAs), measurements of the e+/e− ratio are
fully unpolarized. Therefore, they are not subject to uncer-
tainties arising from polarization measurements.

4 Summary

Box diagrams are a significant source of radiative correc-
tions to nuclear interactions, yet theoretical calculations of
box diagrams include large uncertainties and model depen-
dence. Two-photon exchange is an experimentally accessible
process that can provide a critical benchmark for theoretical
calculations. Existing measurements of SSAs arising from
the imaginary part of the TPE amplitude indicate that theory
could be inadequate for calculating TPE with nuclei. The
e+/e− elastic cross section ratio is sensitive to the real part
of the TPE diagram. While this ratio has been measured on
the proton, no measurements on complex nuclei exist. This
proposed 19-day program would carry out measurements of
the e+/e− ratio on 4He to 0.1% statistical precision at three
kinematic settings. A low-Z nucleus was chosen to minimize
Coulomb distortions, which grow with Z and would over-
whelm TPE in a heavier nucleus. This measurement, which
provides a complementary TPE benchmark to existing SSA
measurements, would be made possible by the addition of a
positron source to CEBAF at Jefferson Lab.
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