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Abstract Light nuclei fall within a regime of universal
physics governed by the fact that the two-nucleon scatter-
ing lengths are large compared to the typical nuclear inter-
action range set by one-pion exchange. This places nuclear
physics near the so-called unitarity limit in which the scatter-
ing lengths are exactly infinite. Effective field theory provides
a powerful theoretical framework to capture this separation
of scales in a systematic way. It is shown here that the nuclear
force can be constructed as a perturbative expansion around
the unitarity limit and that this expansion has good conver-
gence properties for both the binding energies of A = 3, 4
nuclei as well as for the radii of these states.

1 Effective field theory for systems near unitarity

Nuclear physics at very low energies hosts a fascinating
emergent phenomenon: out of the tremendously complicated
dynamics of quarks and gluons, governed by the strong inter-
action (Quantum Chromodynamics, QCD) that is highly non-
perturbative in this regime, ultimately arise strikingly simple
features for systems of few nucleons. It was realized many
decades ago [1–4] that the low-energy two-nucleon system
can be parameterized with a formula that has become famous,
in nuclear physics and beyond, as the effective range expan-
sion (ERE):

k cot δ0(k) = −1

a
+ r

2
k2 + · · · . (1)

Here δ0(k) denotes the S-wave scattering phase shift for two
particles (here, nucleons in a single fixed spin configuration)
with relative momentum k. The leading parameter in this
expansion, called “scattering length” and denoted by a, gov-
erns the nucleon-nucleon (NN ) cross section at low energies
and completely determines it in the limit where the relative
momentum k of the nucleons goes to zero:
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σ = 4πa2 + O(k2). (2)

Empirically, in the 3S1 (“t”) and 1S0 (“s”) NN spin channels
the values are known to be at � 5.4 fm and as � −23.7 fm,
respectively. Compared to the typical range of the nuclear
interaction, set by one-pion exchange providing the longest-
range component as R ∼ M−1

π � 1.4 fm, these scatter-
ing lengths are unnaturally large, as,t � R, qualitatively.
Through Eq. (2) this implies that the nuclear force is particu-
larly strong as the energy goes to zero. The fact that this is so
can be understood as an accidental “fine tuning” of the QCD
parameters [5–9] (the quark masses, in particular) to be close
to a critical point where the scattering lengths diverge. This
point is called the “unitarity (or unitary) limit,” and it is the
heart of the emergent simplicity mentioned at the outset.

Systems near the unitarity limit exhibit universal features.
As the two-body scattering length becomes large, the details
of the underlying interaction largely cease to matter and to
a very good approximation the behavior of the system is
determined qualitatively by the fact that a is large, and quan-
titatively by how large exactly it is. This phenomenon places
low-energy nuclear systems in a common universality class
with other systems near unitarity, such as cold atomic gases
(where the scattering length can be tuned experimentally
via Feshbach resonances [10]), nuclei with a halo/cluster
structure [11], or certain mesons which can be interpreted
as hadronic molecules [12].

In the two-body sector, universality relates scattering
parameters to shallow bound and virtual states. This is a con-
sequence of Eq. (1) and the principle of analyticity: the ERE
provides an expansion of the S matrix, so whenever poles at
complex momenta—in particular bound and virtual states,
which reside at purely imaginary momenta—fall within the
radius of convergence of the expansion, they are described
by the same parameters. Since, schematically, the S-wave S
matrix is given by 1 + it with

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epja/s10050-020-00098-9&domain=pdf
mailto:skoenig@ncsu.edu


113 Page 2 of 15 Eur. Phys. J. A (2020) 56 :113

t (k) ∼ 1

k cot δ0(k) − ik
, (3)

the pole condition is cot δ0(k) = i for some k = iκ . Keeping
only the first term in the ERE this gives κ = 1/a and one sees
that for positive (negative) a one has a bound (virtual) state in
the system. Having a sufficiently large |a| ensures that indeed
these momentum scales lie within the radius of convergence
of the ERE, which for nucleons is determined by the position
of the pion cut, Mπ/2. For the two-nucleon system at the
physical point one has the deuteron as a shallow bound state
(BD � 2.224 MeV, with the difference to 1/(MNa2

t ) ≈
1.41 MeV being due to range corrections) in the 3S1 channel,
and a very shallow virtual state at BNN∗ � 0.068 MeV (with
a relatively small range correction since |as | is so large). In
the unitarity limit, as,t → ∞, both of these poles become
zero-energy S-wave states.

A more striking universal behavior is encountered for
three and more particles: in the unitarity limit there exists
an infinite tower of three-body bound states, geometrically
spaced (the binding energy of each subsequent state is given
by a fixed factor times the previous level) and accumulating
at zero energy, a phenomenon that has become famous as the
Efimov effect [13]. At large but finite scattering length the
spectrum is cut off in the infrared due to the existence of a
two-body pole in the S matrix. It was shown in Refs. [14–16]
that for physical values of the NN scattering lengths the tri-
ton can be interpreted as the single remaining bound state of
such an Efimov tower. More recently it was established in a
model-independent way [17] that a virtual state in the three-
nucleon (3N ) system, known to exist for a long time [18,19],
is in fact an S-matrix pole that would be an excited Efimov
state instead if nature were just slightly closer to the unitar-
ity limit. This confirms a relation previously observed in a
separable potential model [20].

The phenomenon continues at the four-body level. At uni-
tarity, each three-boson Efimov state (with binding energy
B3) is associated with two four-boson states [21]. One of
these is almost five times as deeply bound as the trimer,
B4/B3 � 4.611, while the other resides just below the
particle-trimer threshold, B4∗/B3 � 1.002 [22]. Univer-
sality implies that if the NN scattering lengths were infi-
nite, the ground state of 4He would be located at 4.6 times
the binding energy of the triton (neglecting Coulomb and
other isospin breaking effects). In nature, the ground state
is at Bα/BH � 3.66, and there exists a 0+ resonance
state just above the proton-triton threshold, i.e., one has
Bα∗/BH � 1.05, where BH � 7.72 MeV is the 3He binding
energy, taken as reference here to at least partially account for
isospin breaking effects. The closeness of these ratios to the
unitarity-limit values is a strong indication that nature may
be perturbatively close to unitarity for systems of at least four
nucleons.

In the following, this work discusses how to construct
an effective field theory (EFT) that captures all phenomena
mentioned above. EFTs are a powerful tool widely used in
modern theoretical physics. In nuclear physics they enable
the consistent construction of nuclear forces systematically
connected to QCD by choosing a “theoretical resolution”
at which effective interactions between degrees of freedom
appropriate for the energy scales of interest are constructed.
The richness of nuclear phenomena implies that there are a
number of different EFTs relevant for nuclear physics, form-
ing the “tower” of theories that gives rise to the name of the
topical issue this work is contributed to. A recent review of
EFTs that use nucleons and mesons as degrees of freedom
can be found in Ref. [23]. Here the focus is on setting up
an EFT that systematically expands light nuclei around the
unitarity limit, expanding on previous work considering the
unitarity expansion [24,25] by considering charge radii of
light nuclei in addition to binding energies. The following
sections present the setup and implementation of the unitar-
ity expansion. After a discussion of the main results, Sect. 5
will give a summary and outlook to address the question
where the unitarity expansion resides within the tower, or
landscape, of nuclear EFTs.

As a variant of what has become known as “Pionless EFT,”
the unitarity expansion is defined in terms of a Lagrange
density

L = N †

(
iD0 + D2

2MN

)
N

+
∑

i
C0,i

(
NT PiN

)† (
NT PiN

)
+ D0

(
N †N

)3 + · · · , (4)

where the notation has been taken over from Refs. [24,26].
The degrees of freedom are nonrelativistic nucleon isospin
doublets N = (p n)T , coupled to photon fields Aμ via the
covariant derivative Dμ = ∂μ + ieAμ(1 + τ3)/2, where e
is the proton charge and τa is used to label isospin Pauli
matrices. Of the electromagnetic interactions, only the static
Coulomb potential is relevant up to high orders (defined
later), where corrections from transverse photons will even-
tually enter. The strong interaction is parameterized in Eq. (4)
by the “low-energy constants (LECs)” C0,i and D0, defining
contact (zero-range) interactions without derivatives between
two and three nucleons, respectively. The Pi denote projec-
tors onto the NN S waves, i = 1S0,

3S1. Contact interactions
with derivatives as well as higher-body forces are contained
in the ellipses in Eq. (4), along with other interactions not
shown explicitly here.

The ellipses in Eq. (4) represent a fundamental feature
of an EFT, namely that the Lagrangian contains all possible
terms which are allowed by the symmetries of the system at
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hand. For the EFT of nucleons considered here these symme-
tries are inherited from QCD as the underlying theory: each
term in Eq. (4) is required to be invariant under Galilean
boosts (plus systematic relativistic corrections), rotations,
isospin, and other discrete symmetries. It is of course not arbi-
trary that Eq. (4) explicitly shows some terms but not others.
In order to be predictive, each EFT comes with an organiza-
tional principle called “power counting,” which attributes the
various terms to increasingly higher orders. A starting point
for this organization is typically a naïve dimensional analy-
sis (NDA): fields and derivatives acting on them are assigned
their canonical dimensions, defining the exponent of a typical
low-momentum scale Q. In order for each term to have over-
all dimension four, appropriate powers of the EFT breakdown
scale Mhi are included in the prefactor. For the standard Pio-
nless EFT expansion, Mhi ∼ R−1 ∼ Mπ , and this is kept for
the construction of the unitarity expansion. However, while
standard Pionless EFT assumes Q ∼ 1/as,t , Ref. [24] sug-
gested to count these scales separately as ℵ ∼ 1/as,t while
assuming that

Q ∼ QA = √
2MN BA/A. (5)

This is a momentum scale associated with the binding energy
per nucleon in an A-nucleon system, which for A = 2 coin-
cides with the canonical definition of the binding momen-
tum. With this assumption one obtains ℵ < Q < 1/R such
that it is possible to set up a combined expansion in two
parameters ℵ/Q and QR. Coulomb effects are perturbative
for momenta of order QA as well and are naturally captured
by the expansion if one takes into account that the Coulomb
momentum scale kC = αMN , with the fine-structure con-
stant α ≈ 1/137, is naturally included in the ℵ scale [26].

For a calculation of few-body states it is convenient to
switch from the Lagrangian formulation to standard quantum
mechanics expressed in terms of potentials. In the two-body
sector, it is possible to write

V (0)
2,i = C (0)

0,i |g〉〈g|, (6)

where C (0)
0,i is the leading-order (LO) piece of the non-

derivative contact LEC C0,i in Eq. (4), which has an expan-
sion of the form

C0,i = C (0)
0,i + C (1)

0,i + · · · . (7)

Apart from this, V (0)
2,i is defined in terms of a separable Gaus-

sian regulator function, given by

〈p|g〉 = g(p2) = exp(−p2/Λ2) (8)

in momentum space. This makes the zero-range theory well
defined by regularizing the otherwise divergent interaction
via the introduction of a cutoff scale Λ. Both the value of Λ

and the particular form of the regulator function are arbitrary

and renormalization, discussed below, ensures that observ-
ables are independent of these choices. The separable form is
however particularly convenient for the formalism explained
in the following. It makes it possible to algebraically solve
the Lippmann-Schwinger equations for the LO T matrices
t (0)
i ,

t (0)
i = V (0)

2,i + V (0)
2,i G0t

(0)
i , (9)

where

G0(z) = 1

z − H0
(10)

defines, for an arbitrary energy z, the two-body Green’s func-
tion in terms of the free (purely kinetic) Hamiltonian H0. The
result is:

t (0)
i (z; k, k′) = 〈k|t (0)

i |k′〉 = g(k2)τi(z)g(k
′2), (11)

τi(z) =
[
1/C (0)

0,i − 〈g|G0|g〉
]−1

. (12)

The regulator ensures that 〈g|G0|g〉 is finite. At the on-shell
point, E = k2/MN and k = k′, this solution can be matched
directly to the ERE, yielding

C (0)
0,i → C (0)

0,i (Λ) = 1

2π2MN

(
1

ai
− θ0Λ

)−1

. (13)

With this running coupling appearing in Eq. (6), the two-
body sector of the theory is renormalized. The number θ0 in
general depends on the choice of regulator; for the Gaussian
form used here one finds θ0 = 1/

√
2π . In the unitarity limit,

1/ai = 0, such that the leading-order two-body interaction
is parameter free:

C (0)
0,i (Λ) = −1

2π2MN

1

θ0Λ
. (14)

Perturbative higher orders are defined by formally expand-
ing the full T matrices ti as

ti = t (0)
i + t (1)

i + t (2)
i + · · · , (15)

where t (0)
i is defined by Eq. (12). The corrections t (n)

i for
n > 0 can conveniently be obtained by solving similar inte-
gral equations [25,27]. For the unitarity expansion, correc-
tions from the finite scattering length enter at NLO via C (1)

0,i ,

yielding a separable potential V (1)
2,i with the same form as

Eq. (6). For t (1)
i , this gives rise to

t (1)
i = V (1)

2,i + V (1)
2,i G0t

(0)
i + V (0)

2,i G0t
(1)
i , (16)

which, just like the LO equation, can be solved algebraically
(see Ref. [25] for explicit details). From this procedure one
obtains
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C (1)
0,i (Λ) = −2π2MN

ai

[
C (0)

0,i (Λ)
]2

. (17)

Range corrections enter at NLO together with C (1)
0,i . They

are generated by contact interactions involving quadratic de-
rivatives acting on the nucleon fields, included in the ellipses
in Eq. (4). The corresponding potential can be written in
momentum space as C (1)

2,i g(k
2)

(
k2 + k′2) g(k′2). By virtue

of this still being a separable interaction, the corresponding
version of Eq. (16) with

〈k|V (1)
2,i |k′〉

= C (1)
0,i g(k

2)g(k′2) + C (1)
2,i g(k

2)
(
k2 + k′2) g(k′2) (18)

can still be solved algebraically. Matching the result to the
ERE (1) up to the quadratic term gives

C (1)
2,i (Λ) = π2MN

(
r

2
− 1

θ2Λ

)[
C (0)

0,i (Λ)
]2

, (19a)

C (1)
0,i (Λ) = 4π2MN θ2Λ

3C (0)
0,i (Λ)C (1)

2,i (Λ), (19b)

with θ2 = θ0/4 for the Gaussian regulator used here. Going
to higher orders is straightforward, proceeding in the same
way via integral equations that can be solved algebraically,
recursively using the solutions of previous orders [25,27]. At
second order, the T -matrix correction is obtained from

t (2)
i = V (2)

2,i + V (2)
2,i G0t

(0)
i + V (1)

2,i G0t
(1)
i + V (0)

2,i G0t
(2)
i . (20)

The treatment of Coulomb contributions (which are neglected
in this work), in particular the matching between perturbative
and nonperturbative Coulomb regimes within Pionless EFT,
is discussed in Refs. [25,26].

Leading order for A > 2 is not complete with only theC (0)
0,i

interactions. It is a distinct feature of Pionless EFT, intimately
related to the Efimov effect [14–16], that a three-nucleon
interaction enters at LO. Naïvely it would be expected to
contribute only much later in the power counting because
the larger number of fields, according to NDA, implies more
inverse powers of Mhi in the prefactor. Analogously to the
two-body interactions, the potential induced by the term
involving D0 in Eq. (4) can be written in a separable form,

V (0)
3 = D(0)

0 |3H〉|ξ 〉〈ξ |〈3H| (21)

at LO, where |3H〉 projects onto a J = T = 1/2 three-nucleon
state and the regulator |ξ 〉 is defined, for Jacobi momenta
u1 = 1

2 (k1 − k2) and u2 = 2
3 [k3 − 1

2 (k1 + k2)], as

〈u1u2|ξ 〉 = g
(
u2

1 + 3

4
u2

2

)
. (22)

The ki label the individual nucleon momenta. An NLO cor-
rection V (1)

3 has the same form as Eq. (21), but involves the

LEC D(1)
0 . Both D(0)

0 and D(1)
0 are determined by the triton

binding energy and then enter in other calculations of A ≥ 3
observables. These are described in the following.

2 Faddeev and Faddeev-Yakubovsky equations

This section gives an overview of the three- and four-
body formalism, implementing a unified framework to solve,
respectively, the Faddeev and Faddeev-Yakubovsky equa-
tions used to obtain the results presented in the following
sections. The main aspects are explained in broad strokes,
referring the reader to the references given for more back-
ground. Developments needed to calculate charge radii along
with perturbative corrections are, however, elaborated on fur-
ther, with key results explained in the main text and additional
details provided in Appendices A and B.

The basis for a description of the three-nucleon system
are Jacobi momenta

u1 = 1

2
(k1 − k2), (23a)

u2 = 2

3

[
k3 − 1

2
(k1 + k2)

]
, (23b)

where the ki label the individual nucleon momenta, conjugate
to position vectors xi . Projecting these momenta onto partial
waves yields states |u1u2; s〉, where

|s〉 = | (l2((l1s1) j1
1
2

)
s2

)
J ; (

t1
1
2

)
T 〉 (24)

collects angular momentum, spin, and isospin quantum num-
bers. They are coupled such that (l1s1) j1 and t1 describe the
two-nucleon subsystem, whereas l2 denotes the orbital angu-
lar momentum associated with the Jacobi momentum u2 and
s2 is an intermediate quantum number. For the trinucleon
bound states, the total spin and isospin are J = T = 1/2.
These states are determined by solving the Faddeev equa-
tion [28]

|ψ(0)〉 = G0 t
(0) P|ψ(0)〉

+1

3
(G0 + G0t

(0) G0)V
(0)
3 (1 + P)|ψ(0)〉, (25)

where |ψ(0)〉 = |ψ(0)
(12)3〉 is one of three equivalent two-body

Faddeev components. As already done in the discussion of
the two-body sector, explicit superscripts “(0)” are used to
denote leading-order quantities. Alternatively, one can incor-
porate the three-body interaction V (0)

3 by writing [29]

|ψ̃(0)〉 = G0 t
(0) P|ψ̃(0)〉 + G0 t

(0) |ψ(0)
3 〉, (26a)

|ψ(0)
3 〉 = G0 t

(0)
3 (1 + P)|ψ̃(0)〉, (26b)

where |ψ(0)
3 〉 is an auxiliary amplitude, and

t (0)
3 = V (0)

3 + V (0)
3 G0 t

(0)
3 . (27)

The tilde is used to distinguish |ψ̃(0)〉 from |ψ(0)〉. In either
form of the Faddeev equations, G0 denotes the free three-
body Green’s function and P = P12P23 + P13P23 gener-
ates the non-explicit components through permutations. t (0)

collectively denotes the two-body T-matrices t (0)
i . Note that
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|ψ(0)
3 〉 can be eliminated by inserting Eq. (26b) into Eq. (26a),

yielding an equation of the form

|ψ(0)〉 = K (0)|ψ(0)〉 (28)

with

K (0) = G0 t
(0) P + G0 t

(0) G0 t
(0)
3 (1 + P), (29)

and alternatively a similar kernel can be obtained from
Eq. (25) in terms of V (0)

3 . Either form of the Faddeev equa-
tions is solved by representing it within the space of states
|u1u2; s〉, discretizing the momenta u1,2 on a quadrature
mesh. The binding energy is determined by varying the
energy E , entering as an argument to both G0 and t (0) until
the kernel K has a unit eigenvalue. At that energy, E = −B0,
|ψ(0)〉 can then be determined as the corresponding eigen-
state and finally one constructs the full wavefunction as

|Ψ (0)〉 = (1 + P)|ψ(0)〉 + |ψ(0)
3 〉. (30)

If one starts from Eq. (25), there is no explicit three-body Fad-
deev component and one simply has |Ψ (0)〉 = (1+P)|ψ(0)〉.

Fundamentally, the permutation operator P leads to a cou-
pling of different partial waves (see Ref. [30] for an excellent
pedagogical discussion of both this and the Faddeev equa-
tions in general), and for the construction of the full wave-
function (30) it is important to include higher partial waves:
the proper antisymmetry of |Ψ (0)〉 is only recovered as more
and more states are included, which means that in principle
all observables calculated from |Ψ (0)〉 have to be checked for
convergence.

The full wavefunctions |Ψ (0)〉 are used to calculate both
perturbative shifts for the binding energy,

B1 = 〈Ψ (0)|V (1)|Ψ (0)〉, (31)

as well as the radius at LO (see Sect. 4). Note that |Ψ (0)〉 is
assumed here to be properly normalized,

〈Ψ (0)|Ψ (0)〉 = 1. (32)

In calculating the matrix elements in Eqs. (31) and (32) it
is advantageous to exploit the antisymmetry of |Ψ (0)〉 as
much as possible because that will speed up convergence
of results with respect to the number of partial-wave chan-
nels. For example, the two-body part of the full potential V (1)

can be expressed through permutations in terms of only the
potential between the pair of nucleons 1 and 2, and it holds
that (1 + P)(1 + P) = 3(1 + P).

Note furthermore that Eq. (26), and similarly Eq. (25), can
be significantly simplified by exploiting the fact that the two-
and three-body interactions are separable and act only within
S waves. As a result, it suffices to work with merely two
coupled equations for the triton [29], and using the procedure
described in the previous paragraph it is furthermore possible
to eliminate all intermediate higher partial-wave components

in the calculation of B1. These simplifications are used in the
practical implementation to fit the three-body LECs D(0)

0 and

D(1)
0 .
Describing the four-nucleon system requires an additional

Jacobi momentum

u3 = 3

4

[
k4 − 1

3
(k1 + k2 + k3)

]
, (33)

as well as an alternative set of momenta (v1, v2, v3), describ-
ing a 2+2 cluster setup, i.e., v1 = u1, v3 denotes the relative
momentum in the (34) system, and v2 is defined as the relative
momentum between the (12) and (34) subsystems.

Including the remaining quantum numbers, this leads to
channel states

|a〉 = |(l2((l1s1) j1
1
2

)
s2

)
j2,

(
l3

1
2

)
j3, ( j2 j3)J ; ((

t1
1
2

)
t2

1
2

)
T 〉,

(34a)

|b〉 = |(λ2(λ1σ1)ι1)ι2, (λ3σ3)ι3, (ι2ι3)J ; (τ2τ3)T 〉.
(34b)

The |a〉 are a straightforward extension of three-nucleon
states (24), including the angular momentum l3 associated
with u3 as well as spin and isospin 1

2 for the fourth nucleon.
For the b states, (λ1, σ1, τ1) and (λ3, σ3, τ3) are two-body
quantum numbers for the (12) and (34) subsystems, respec-
tively, whereas λ1,2,3 are the angular momenta associated
with v1,2,3. For 4He the total spin and isospin are J = T = 0.

Following Refs. [29,31], the Faddeev-Yakubovsky equa-
tions can be written as

|ψ(0)
A 〉 = G0t

(0)P
[
(1 − P34)|ψ(0)

A 〉 + |ψ(0)
B 〉]

+1

3
(1 + G0t

(0))G0V
(0)
3 |Ψ (0)〉 (35a)

|ψ(0)
B 〉 = G0t

(0) P̃
[
(1 − P34)|ψ(0)

A 〉 + |ψ(0)
B 〉], (35b)

corresponding to the decomposition

|Ψ (0)〉 = (1 + P)
[
(1 − P34 − P34P)|ψ(0)

A 〉
+(1 + P̃)|ψ(0)

B 〉
]

(36)

of the full four-body wavefunction. The two distinct Fadde-
ev-Yakubovsky components |ψA〉 and |ψB〉 correspond to,
respectively, 3+1 and 2+2 cluster configurations of the four-
body system, with the former naturally expressed in terms of
the Jacobi momenta ui and states |a〉, and the latter in terms of
vi and |b〉. Note that the same notation is used here as for the
three-body case, and G0 in Eqs. (35a, b) now represents the
free four-body Green’s function. In addition to the operator
P already encountered in the three-body system, Eqs. (35a,
b) include the further permutations P34 and P̃ = P13P24 to
ensure proper antisymmetry. In fact, the overall symmetry
is determined by the sign in front of P34: to study a bosonic
system, one would use (1+P34) acting on |ψ(0)

A 〉 to construct
fully symmetric states.
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The structure of Eqs. (35a, b) can be made clearer by
rewriting them in a generic matrix form,(
1 − K̂ (0)

)
|ψ (0)〉 = 0, (37)

with |ψ (0)〉 = (|ψ(0)
A 〉, |ψ(0)

B 〉)T and the kernel

K̂ (0) = G0t
(0) P̂ + 1

3
(G0 + G0t

(0)G0)V
(0)
3 P̂3. (38)

In Eq. (38), G0 and t (0) are understood to be diagonal matri-
ces, and the permutation operators are collected in

P̂ = diag(P, P̃) ⊗
(

(1 − P34) 1
(1 − P34) 1

)
, (39a)

P̂3 =
(

(1 + P)(1 − P34 − P34P) (1 + P)(1 + P̃)

0 0

)
,

(39b)

where “⊗” represents matrix multiplication. From this
form the structural analogy to the three-body Faddeev case
becomes obvious.

Just like for the Faddeev equations, Eqs. (35a, b) are solved
by projecting onto states |u1u2u3; a〉, |v1v2v3; b〉 [31], dis-
cretizing all momenta on a grid, and looking for a unit eigen-
value of the resulting kernel matrix as a function of the energy.
However, the set of coupled equations does not naturally trun-
cate even if all interactions are pure S wave. This means that
already for a determination of the binding energies it is nec-
essary to truncate the sums in Eq. (34) (by choosing all total
angular momenta ji and ιi less than some jmax) and study
the numerical convergence of results as jmax is increased.

3 Binding energies of light nuclei

By construction, the unitarity expansion renders the deuteron
a zero-energy bound state at leading order. Since the expan-
sion is set up in powers of the inverse scattering lengths, it
corresponds to the zero-range binding momentum κt = 1/at
in the 3S1 channel. As demonstrated explicitly in Ref. [25]
by using the perturbative formalism discussed in Sect. 1, this
implies that the deuteron remains at zero energy at NLO and
only moves to 1/(MNa2

t ) in an N2LO calculation. This is so
for both the pure expansion in 1/at , neglecting range correc-
tions, but interestingly also for the full unitarity expansion
that includes, via C (1)

2,i , range corrections starting at NLO.
This is so because the unitarity LO shifts all corrections that
mix ERE parameters to a higher order compared to where
they would be with a finite scattering length at LO. Overall,
the dominant source of uncertainty for the deuteron energy
comes from the 1/(Q2at ) expansion, which still amounts
to a 50% effect at N2LO. Conservatively taking the experi-
mental binding energy as reference value for the uncertainty
estimate yields BN2LO

d = 1.41 ± 1.12 MeV.

The triton, being the “anchor point” of the expansion that
determines the value of three-body parameter D(0)

0 , stays
fixed at the physical binding energy at each order. With
the finite physical scattering lengths entering through C (1)

0,i

at NLO, the three-body LEC D(1)
0 compensates the shift in

the triton energy to keep it in place. This leaves the 3He
binding energy as a nontrivial prediction. While at LO by
construction the trinucleon bound states are degenerate,1

finite-scattering-length corrections together with Coulomb
effects (specifically, one-photon exchange) produce a triton-
helion splitting (BT − BH )NLO � (0.92 ± 0.18) MeV at
NLO [24], in good agreement with the experimental value
(BT − BH )exp � 0.764 MeV. Details regarding the per-
turbative treatment of Coulomb effects are discussed in
Refs. [25,26].

The 4He nucleus provides a more serious test of the uni-
tarity expansion. Since QAR ∼ 0.8 for 4He, it is the stan-
dard Pionless EFT part of the unitarity scheme which naïvely
one might doubt to work, while the pure unitarity expansion,
ℵ/QA, should indeed work better with increasing QA. Fig-
ure 1 shows the 4He binding energy as a function of the
momentum cutoff Λ. The observed convergent behavior as
Λ increases indicates that the EFT calculation is properly
renormalized, as established originally in Refs. [29,32,33].
Results for the standard pionless LO, given by the (blue)
diamonds in Fig. 1, are consistent with this earlier work.

While any Λ above the breakdown scale (of order Mπ ) is a
valid cutoff choice in principle, polynomials in 1/Λ are fitted
to the points in Fig. 1 to quantitatively assess the convergence
and conveniently extrapolate Λ → ∞. This procedure gives
Bα = 39(12) MeV in the unitarity limit, with the uncertainty
estimated as O(rs,t/as,t ) � 30% based on the expectation
that range effects 3S1 are the dominant correction. Includ-
ing the finite-scattering lengths as NLO corrections gives the
(green) circles in Fig. 1, very close to the standard pion-
less LO, indicating that the 1/(Q4as,t ) expansion appears to
converge remarkably well up to this order, and indeed the
extrapolated result 30(9) MeV comes out very near the stan-
dard pionless LO value of 31(9) MeV.2

It should be stressed that an NLO including only finite-
a corrections is incomplete: in the full unitarity expansion,
range corrections and Coulomb effects enter at the same time.

1 In Table 1, it is indicated that the 3H energy is fixed at 8.48 MeV as
renormalization condition to determine D(0)

0 , while the 3He energy is
then a prediction with 30% uncertainty estimate at LO.
2 Note that the NLO data points at finite cutoffs shown in Fig. 1 differ
slightly from the results shown in Refs. [24,34]. This is due to a small
error that has been fixed in the numerical implementation. Incidentally,
the NLO result in the limit Λ → ∞ is almost unaffected by this, with
the value merely changing from the 29.5 MeV reported in Ref. [24]
to 30.2 MeV. The difference is negligible compared to the � 9 MeV
uncertainty estimated at this order. Therefore, all conclusions of the
previous work remain unchanged.
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Fig. 1 4He binding energy as function of the Gaussian cutoff parameter
Λ. The (blue) diamonds and (green) squares show, respectively, the
results for standard Pionless EFT and the unitarity expansion at LO.
Inclusion of first-order corrections in 1/as,t (i.e., an incomplete NLO
that neglects range and Coulomb effects) gives the (green) circles. The
closeness to the standard leading order demonstrates how well this part
of the expansion convergences. Large symbols on the right edge indicate
results for an extrapolation Λ → ∞ (see text)

While the latter are expected to be small given that 4He is
rather deeply bound, it turns out that the inclusion of range
effects actually has a profound consequence: in Ref. [35] it
is shown that a four-body interaction is required to renormal-
ize the universal four-boson system once range corrections
are included at NLO, and universality implies that this con-
clusion carries over directly to 4He in Pionless EFT. The
implication is that a four-nucleon input datum is required to
fix the unknown four-body parameter at NLO, and this is
most naturally taken to be 4He ground-state energy. Other
properties, such as the ground-state radius (discussed below)
or the position of the 0+ excited state, will remain predic-
tions at NLO – unless it turns out that additional many-body
forces are required for a renormalized NLO calculation of
these observables. While it may seem unlikely and is cer-
tainly not to be expected based on NDA, such a possibility
cannot a priori be excluded: each calculation needs to be
carefully checked if it is properly renormalized.

The rapid convergence of the pure unitarity expansion
persists off the physical point. Figure 2 shows the correla-
tion between 3N and 4N binding energies, known as the
Tjon line [36]. Its existence is explained by the three-body
parameter largely governing the physics of the system [33].
It is seen that the result starting from unitarity is shifted very
close to having the exact scattering lengths at LO over a sig-
nificant range or triton energies. This observation provides
further evidence that the unitarity expansion converges well
and that the results found at the physical point are not merely
accidental.

The unitarity expansion for ground-state energies up to
A = 4 is summarized in Table 1. Observables fixed as input
data at a given order are shown as underlined text. This in
particular includes the 3He binding energy at N2LO since
according to Refs. [25,26] an isospin-breaking three-body

Fig. 2 Tjon line: correlation between the 4He and 3H binding energies.
(Blue) dotted curve: standard pionless LO result; (green) dashed upper
curve: unitarity limit at LO. Additional points nearly on top of the blue
curve: inverse scattering lengths added in first-order perturbation theory.
Star: experimental point

Table 1 Unitarity expansion convergence pattern. Underlined values
indicate energies which are used as input values to determine three-
body LECs. An asterisk superscript indicates an incomplete NLO result
which only includes the finite-scattering length but no contributions
from effective ranges or electromagnetic interactions

State ELO
B /MeV ENLO

B /MeV EN2LO
B /MeV Eexp.

B /MeV

2H 0 0 1.41 ± 1.12 2.22
3H 8.48 8.48 8.48 8.48
3He 8.5 ± 2.5 7.6 ± 0.2 7.72 7.72
4He 39 ± 12 30 ± 9∗ 28.3

force is required once perturbation theory mixes Coulomb
effects and range corrections.3 Taking into account the find-
ings of Ref. [35], the 4He binding energy should be under-
lined for a complete NLO as well.

4 Charge radii and form factors

It has so far been established that the unitarity expansion
describes well the ground-state energies of light nuclei.
While certainly impressive given how simple the LO of the
expansion is, it is still merely a first step towards showing
that the scheme comprehensively captures the properties of
light nuclei.

Further insight can be gained by considering charge radii
of the A = 3, 4 systems as well. Within the momentum-
space framework employed in this work, this is achieved by
calculating charge form factors

FC (q2) = 〈Ψ |ρ̂(q)|Ψ 〉 (40)

3 Note that if Coulomb effects are included nonperturbatively already
at LO, which is not necessary for light nuclei, an isospin-breaking three-
body force enters already at NLO [37].
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for the 3H and 4He ground states, from which one obtains
point charge radii as

〈r2
0 〉 = −1

6

d

d(q2)
FC (q2)

∣∣∣
q2=0

, 〈r0〉 ≡
√

〈r2
0 〉. (41)

In Eq. (40), the total charge operator ρ̂ ≡ J0, i.e., the zero
component of the electric current Jμ, is given by the sum of
the individual nucleon contributions,

ρ̂ =
A∑

i=1

ρ̂i . (42)

The (anti-)symmetry of the wavefunction makes it possible
to replace this sum by Aρ̂i for any fixed i . A particularly
convenient choice for three nucleons is i = 3 because it
holds that

x3 = R(3) + 2

3
r2, (43)

where r2 is the relative distance conjugate to u2 and R(3)

is the overall center-of-mass coordinate. With this choice,
the momentum-space expression for the current operator
involves a momentum transfer only onto the Jacobi momen-
tum u2. Likewise, for four nucleons a good choice is i = 4
because with

x4 = R(4) + 3

4
r3 (44)

one obtains a momentum transfer only onto u3.
To use ρ̂ within the Faddeev-Yakubovsky framework, it is

necessary to represent it within the appropriate partial-wave
basis. Since ρ̂ does not depend on spin, two-body matrix
elements of ρ̂ are given by

〈u; (ls) jm|ρ̂(q)|u′; (
l ′s′) j ′m′〉

= δ j j ′δmm′ 〈u; l||ρ̂(q)||u′; l〉, (45)

where the reduced matrix element on the right-hand side is
given by

〈u; lm|ρ̂(q)|u′; l ′m′〉

= δll ′δmm′
1

2

∑
k

√(
2l

2k

)
Cl0
k0,(l−k)0

×
∫ 1

−1
dx Pk(x)

δ
(
u′ − ι(u, q, x)

)
u′2

ul−k
(− 1

2q
)k

ι(u, q, x)l
, (46)

without the δmm′ , where

ι(p, q, x) =
√
p2 − pqx + q2/4. (47)

A detailed derivation of Eq. (46) is provided in Appendix A.
Embedding ρ̂ into the three- and four-body bases merely

leads to additional Dirac and Kronecker deltas, as well as to
kinematic prefactors multiplying the momentum transfer q
which can be read off from Eqs. (43) and (44):

〈u1u2; s|ρ̂3(q)|u′
1u

′
2; s′〉

= δl1l ′1δl1l ′1δs1s′1δt1t ′1δs2s′2δJ J ′δT T ′

×δ(u1 − u′
1)

u2
1

〈u2; l2||ρ̂( 4
3 q)||u′

2; l ′2〉, (48)

〈u1u2u3; a|ρ̂4(q)|u′
1u

′
2u

′
3; a′〉

= δl1l ′1δs1s′1δ j1 j ′1δt1t ′1δs2s′2δ j2 j ′2δt2t ′2δJ J ′δT T ′

δ(u1 − u′
1)

u2
1

δ(u2 − u′
2)

u2
2

〈u3; l3||ρ̂( 3
2 q)||u′

3; l ′3〉. (49)

At leading order in the unitarity expansion, the form factor
is given by

F (0)
C (q2) = 〈Ψ (0)|ρ̂(q)|Ψ (0)〉, (50)

and analogously Eq. (41), with added superscripts “(0),”
yields the LO point charge radii. At NLO, the correction
to the form-factor is4

F (1)
C (q2) = 2 〈Ψ (1)|ρ̂(q)|Ψ (0)〉, (51)

where the factor 2 follows from symmetry. Perturbatively
expanding Eq. (41) gives

〈r0〉(1) = 1

2

〈r2
0 〉(1)

〈r0〉(0)
, (52)

with 〈r2
0 〉(1) calculated from the slope of F (1)

C (q2) at q2 = 0.
Evaluating the perturbative radius shifts defined above

requires the NLO correction to the wavefunctions that enter
in Eq. (51). Is is possible to obtain these for three- and
four-body systems from inhomogeneous versions of the
Faddeev and Faddeev-Yakubovsky equations, respectively.
As is derived in Appendix B, for three particles one has
|Ψ1〉 = (1 + P)|ψ1〉, with the NLO Faddeev component
|ψ1〉 defined as a solution of5[

1 − G0t
(0)P − (G0 + G0t

(0) G0)V
(0)
3

]
|ψ1〉

= (G0 + G0t
(0)G0)

[
V (1)

2 (1 + P) + V (1)
3 + B1

]
|ψ0〉.

(53)

In Eq. (53), G0 and t (0) are understood to be evaluated at the
LO binding energy, E = −B0. Similarly, for four nucleons
NLO Faddeev-Yakubovsky equations can be written as(
1 − K̂ (0)

)
|ψ (1)〉 = K̂ (1)|ψ (0)〉, (54)

with the kernel K̂ (0) as defined in Eq. (38) and

4 In principle, the current operator should also be expanded perturba-
tively, ρ̂ = ρ̂(0) + ρ̂(1) +· · · , but there is no separate NLO contribution
in the pure 1/a expansion considered here.
5 Note that Eq. (53) makes explicit use of the fact that the three-body
force considered here is symmetric under all permutations, such that
V (n)

3 (1 + P) = 3V (n)
3 .
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Fig. 3 Point-charge radii for 3H and 4He as function of the Gaussian
cutoff parameter Λ. The (purple) diamonds and (cyan) pentagons show,
respectively, 3H results for standard Pionless EFT and the unitarity
expansion at LO. The (cyan) hexagons are obtained by perturbatively
including 1/∗ correction on top of the unitarity LO. For 4He, results are
shown in the upper part, with symbols as in Fig. 1. Large symbols on
the right edge indicate results for an extrapolation Λ → ∞ (see text)

K̂ (1) = B1(G0 + G0t
(0)G0) + G0t

(1) P̂

+G0t
(1)G0V

(0)
3 P̂3 + (G0 + G0t

(0)G0)V
(1)
3 P̂3.

(55)

Note that as explained in Appendix B special care has to
be taken when solving Eqs. (53) and (54) to account for the
fact that the operators on the left-hand sides are singular at
E = −B0. From the components |ψ (1)〉 = (|ψ(1)

A 〉, |ψ(1)
B 〉)T

the full NLO correction |Ψ (1)〉 is obtained analogously to
Eq. (36). For practical calculations Eq. (54) is simplified
based on the fact that all interactions are chosen to be sep-
arable. This can be achieved with the same factorization as
used in Ref. [29] at LO.

As for the 4He energy discussed in the previous section,
the focus here is on the 1/a part of the unitarity expansion
while the inclusion of range corrections is postponed to future
work. Results for the ground-state radii of both 3H and 4He
are shown in Fig. 3 as a function of the UV cutoff Λ. Conver-
gence as Λ increases is evident from the plot, and just like it
was done for the binding energies, polynomials in 1/Λ are
fitted to the data points in order to extrapolate Λ → ∞. The
horizontal lines in Fig. 3 show the experimental values of the
point charge radii, which, following Ref. [38], are defined as

〈r2
0 〉3H = 〈r2〉3H − 〈r2〉p − 2〈r2〉n (56)

for the triton, and

〈r2
0 〉4He = 〈r2〉4He − 2〈r2〉p − 2〈r2〉n (57)

for 4He. That is, contributions from the root-mean-square
radii of the individual nucleons are subtracted from the exper-
imental nuclear charge radii.

Using experimental values from Ref. [39] for the quanti-
ties appearing on the right-hand sides of the above definitions
one obtains, with error bars negligible compared to those of
the present theoretical calculation, 〈r2

0 〉exp
3H

= 1.59 fm and

〈r2
0 〉exp

4He
= 1.72 fm.

The lower part of Fig. 3 shows results for the triton. In
the limit Λ → ∞, indicated as points on the right border of
the plot, the 3He radius comes out as 〈r0〉(0)

3H
= 1.15(35) fm

for the standard pionless LO, and 〈r0〉(0)
3H

= 1.04(31) fm at
unitarity. Perturbative corrections shift the unitarity LO result
more than half way towards the value obtained for physical
scattering lengths at leading order,

〈r0〉(0)
3H

+ 〈r0〉(1)
3H

= 1.10(33) fm, (58)

indicating that the unitarity expansion works well for this
observable. This is in line with the results of Ref. [40], where
good convergence is found for a perturbative expansion of
3H and 3He radii around an SU (4) symmetric leading order
(of which the unitarity limit is a special case). The result
obtained for standard pionless LO is furthermore in excellent
agreement with the calculation of Ref. [38], at unitarity the
radius satisfies well the universal relation [38,40,41]

MN B3H〈r2
0 〉3H = (1 + s2

0 )/9 ≈ 0.224. (59)

As done for binding energies it is assumed here that the
QAR part dominates the overall expansion, yielding a 30%
uncertainty both at LO as well as NLO. Indeed, from Ref. [38]
it is known that range corrections contribute significantly to
the triton radius in Pionless EFT and shift the result close to
the experimental value once they are included. This uncer-
tainty assignment places the experimental value outside the
error band of the unitarity LO result. Since it is purely based
on omitted range corrections, this is not actually a reason for
concern and merely indicates that to be yet more conserva-
tive one should consider adding the uncertainties from the
QAR and ℵ/QA expansions coherently.

Results for 4He radius, shown in the upper part of Fig. 3,
look equally good. In fact, consistent with what is found
for the binding energy, the result obtained from a standard
pionless LO calculation, 〈r0〉(0)

4He
= 1.69(51) fm, comes out

surprisingly close to the experimental value. At unitarity the
radius comes out smaller, 〈r0〉(0)

4He
= 1.49(45) fm, consistent

with the observed overbinding in the unitarity limit. Inclusion
of perturbative 1/a corrections shifts this value to

〈r0〉(0)
4He

+ 〈r0〉(1)
4He

= 1.73(52) fm, (60)

in excellent agreement with the standard pionless LO result
and therefore providing yet more evidence for the good
convergence properties of the unitarity expansion. In par-
ticular, the fact that convergence appears to be somewhat
faster for 4He than for the triton is in good agreement with
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ℵ/Q4 < ℵ/Q3 obtained from Eq. (5), and it therefore rein-
forces confidence in this estimate.

5 Summary and perspectives

Superficially, the unitarity expansion may seem like merely
a minor departure from standard Pionless EFT. It is rather
well known that Pionless EFT, unlike Chiral EFT, is the ideal
EFT to describe few-nucleon systems at low energies since its
expansion explicitly embraces implications from the scatter-
ing lengths being large, basing its power counting explicitly
on this fact. Chiral EFT is limited at low energies by its simul-
taneous expansion in both momenta and around the chiral
limit, with Mπ �= 0 parametrizing the distance from it. This
combination yields a power counting for Q ∼ Mπ which
does not easily capture the physics of the regime Q � Mπ .
Notably, one-pion exchange only contributes to the NN scat-
tering lengths through loop effects.

However, the unitarity expansion does in fact constitute
a significant paradigm shift in the EFT-based description of
light nuclei: it goes as far as saying that the details of the
two-body sector, represented by the experimental values of
the scattering lengths, do not actually matter much to describe
the gross properties of light nuclei. Instead, it fully embraces
universality and uses the three-body sector as anchor point,
constructing a leading order with just a single parameter and
an exact manifestation of the Efimov effect. In this work
it has been shown that the 1/a expansion of the unitarity
scheme works well not only for binding energies of up to
four nucleon systems, but that similarly good convergence
is obtained for the 3H and 4He point charge radii as well.
This finding solidifies the picture drawn in the introduction of
this work, placing few-nucleon systems in a universal regime
perturbatively close to the unitarity limit.

It is an important next step to include range corrections and
Coulomb effects, thus considering the full unitarity scheme
that pairs the expansions in ℵ/QA and QA/Mhi = QAR. So
far, this has been investigated only for the 3H-3He energy
splitting, where by construction range corrections cancel
at NLO [24]. An isospin-breaking three-nucleon force is
required once range corrections mix with Coulomb contri-
butions at N2LO [25]. Range corrections are known to sig-
nificantly contribute to the triton point charge radius [38].
For the 4He radius, the closeness to the experimental point
already without range corrections found in this work leaves
little room (about 0.01 fm in the central value) for a signifi-
cant shift at full NLO, suggesting that several of the contribu-
tions neglected here might cancel. From Ref. [35] it is known
that full NLO requires a four-nucleon force to be included
along with range corrections, which is most conveniently
fit to reproduce the 4He energy at the experimental point at
NLO. It is conceivable that this fixing of the energy will main-

tain a good reproduction of the radius, just like it is observed
for the standard Pionless LO result. Coulomb contributions
should also be included in a complete NLO calculation, along
with isospin breaking in the 1S0 NN scattering lengths. This
is expected to be a small effect for a bound state as deep as
4He, but it is interesting to note that fitting the four-nucleon
force to exactly reproduce the 4He binding energy at NLO
will inevitably absorb isospin-breaking contributions as well.
Clearly a careful overall consideration of the LEC fitting pro-
cedure is called for in light of this to avoid possible overfitting
of individual parameters. Bayesian methods stand ready as a
powerful tool to address this [42,43].

Apart from such more technical issues, it is an exciting
question how far into the nuclear chart the unitarity expan-
sion can reach and what exactly its place is in the tower of
nuclear EFTs. The observation that bosonic systems at uni-
tarity exhibit saturation for large numbers of particles [44]
and recent calculations of nuclear matter using interactions
guided by unitarity [45] provide reason to be optimistic that
universality, and in particular discrete scale invariance [46],
is able to inform more than just few-nucleon calculations. On
the other hand, Refs. [47,48] indicate that few-nucleon sys-
tems beyond A > 4 may not be bound in the unitarity limit.
To further assess this situation one should investigate whether
these states can be found as resonance (or virtual state) poles
at unitarity, and if so, if these poles are perturbatively close
to the situation in the real world.

In the bosonic sector, the promotion of many-body forces
to lower orders than where they would be expected according
to NDA is a fascinating consequence of universality [35], but
it does impose practical limitations on many-body calcula-
tions. Beyond four nucleons the influence of Fermi statistics
is expected to become important, which will most likely limit
the promotion of A-nucleon forces with A > 4. However, at
the same time one should wonder how much this might con-
strain the usefulness of universality in general, and at which
point the Fermi momentum becomes a relevant scale for the
description of nuclei. A calculation of, for example, n-α scat-
tering within the unitarity expansion will be an important next
test of the framework and help assess its exact place in the
tower of nuclear EFTs.
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A Partial-wave decomposition of charge operators

A generic one-body charge operator between two-body states
|u; lm〉 can be written as

〈u; lm|ρ̂(q)|u′; l ′m′〉
=

∫
d3 p

∫
d3 p′ 〈u; lm|p〉〈p|ρ̂(q)|p′〉〈p′|u′; l ′m′〉

=
∫

d3 p
∫

d3 p′ Ylm( p̂)

× δ(u − p)

u2 δ(3)
(
p − p′ − 1

2 q
)
Y ∗
l ′m′( p̂′)δ(u

′ − p′)
u′2

=
∫

dp p2
∫

dΩp Ylm( p̂)
δ(u − p)

u2

× δ(u′ − ∣∣p − 1
2 q

∣∣)
u′2 Y ∗

l ′m′
(
p − 1

2 q
∧)

. (61)

The dependence on the angles of q can be isolated by using
a procedure analogous to the one described in Ref. [30] for the
permutation operators appearing in the Faddeev equations.
It holds that

Y ∗
l ′m′

(
p − 1

2 q
∧) =

∑
λ′

1+λ′
2=l ′

pλ′
1
(− 1

2q
)λ′

2∣∣p − 1
2 q

∣∣l ′
×

√
4π(2l ′ + 1)!

(2λ′
1 + 1)!(2λ′

2 + 1)!Y
l ′m′∗
λ′

1λ
′
2
( p̂, q̂),

(62)

and furthermore

δ(u′ − ∣∣p − 1
2 q

∣∣)
u′2 = 2π

∑
k

√
k̂(−1)k

×
[∫ 1

−1
dx Pk(x)

δ
(
u′ − √

p2 − pqx + q2/4
)

u′2

]

×Y00
kk( p̂, q̂), (63)

where k̂ = 2k + 1.

In these expressions, Y LM
l1,l2 is used to denote two coupled

spherical harmonics. The resulting product can be reduced:

Y l ′m′∗
λ′

1λ
′
2
( p̂, q̂)Y00

kk( p̂, q̂)

= 1

4π

√
k̂λ̂′

1λ̂
′
2(−1)λ

′
1+λ′

2+l ′

×
∑
f1, f2

{
f2 f1 l ′
λ′

1 λ′
2 k

}
C f10
k0,λ′

10C
f20
k0,λ′

20Y l ′m′∗
f1 f2 ( p̂, q̂).

(64)

At this point, it is possible to perform the integral over p̂
in Eq. (61), yielding:∫

dΩpYlm( p̂)Y l ′m′∗
f1 f2 ( p̂, q̂) =

∑
m2

Cl ′m′
lm, f2m2

Y ∗
f2m2

(q̂) δ f1l .

(65)

Since ρ̂ is a scalar operator that cannot connect l ′ �= l, only
f2 = m2 = 0 can contribute and Y ∗

f2m2
(q̂) reduced to a factor

1/
√

4π . This leads to a cascade of further simplifications:

Cl ′m′
lm,00 = δll ′δmm′ (66a){

0 l l ′
λ′

1 λ′
2 k

}
= (−1)l

′+λ′
1+λ′

2δll ′δλ′
2k

/

√
l̂ k̂ (66b)

C00
k0,k0 = (−1)k/

√
k̂. (66c)

Putting everything together leads to Eq. (46) in the main
text.

The next step is embedding the current into the three-
nucleon system. To that end one decouples the states |s〉
defined in Eq. (24) to isolate the u2 part:

|u1u2;
(
l2

(
(l1s1) j1

1
2

)
s2

)
JM〉

=
∑
m2,σ2

∑
μ1,σ

C j2μ2
l2m2,s2σ2

Cs2σ2

j1μ1,
1
2 σ

×|u1; (l1s1) j1μ1〉|u2; l2m2〉| 1
2σ 〉. (67)

Taking matrix elements, it is possible to exploit that ρ̂ is
diagonal, so one simply gets a number of Kronecker deltas
from the reduction of the Clebsch-Gordan coefficients. In
particular,

〈(l1s1) j1μ1|
(
l ′1s′

1

)
j ′1μ′

1〉 = δ j1 j ′1δμ1μ
′
1
δl1l ′1δs1s′1 . (68)

For the isospin part, one finds

〈(t1 1
2

)
T | (t ′1 1

2

)
T ′〉 = δt1t ′1δT T ′ , (69)

such that overall one arrives at Eq. (48). Analogously, for
the four-nucleon system, the first step is decoupling the u3

part from the states (34a). Omitting the intermediate quantum
numbers for the (123) subsystem as well as the isospin part,
one finds

|u1u2u3;
(
j2

(
l3

1
2

)
j3

)
JM〉 =

∑
μ2,μ3

∑
m3σ3

C JM
j2μ2, j3μ3
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×C j3μ3

l3m3,
1
2 σ3

|u1u2; j2μ2〉|u3; l3m3〉| 1
2σ3〉,

(70)

leading to Eq. (49).

B Perturbative expansion of few-body bound states

This appendix discusses methods to obtain perturbative cor-
rections for few-body wavefunctions. In the main text of
this work, these corrections are used to calculate first-order
shifts for three- and four-nucleon charge radii within the uni-
tarity expansion, but having access to wavefunctions gener-
ally enables a variety of further calculations. For example,
second-order corrections to binding energies can be obtained
in a way that is numerically much simpler than the procedure
used in Ref. [25] to extract such second-order shifts from
off-shell T -matrix corrections. An abstract operator nota-
tion is used throughout this section, and conventions for sub-
and superscripts differ from the usage in the main text in
order to simplify the notation. After a general discussion that
does not assume any fixed number of particles, concrete first-
order equations for three- and four-body states are derived
in Sect. B.2. While explicit results are given for first-order
perturbation theory, it is clear from the following discussion
that higher-order equations can be derived analogously in
a recursive fashion, much like it is done in Ref. [38] for a
calculation of the triton charge radius up to next-to-next-to
leading order. The derivations presented here are built on the
concept of using inhomogeneous equations to calculate per-
turbative corrections, introduced in Ref. [38] specifically for
three-body vertex functions, and previously in Ref. [27] for
scattering calculations.

B.1 Generic discussion

In principle, one can base a perturbative corrections for
bound-state wavefunctions on the corresponding expansion
of the Lippmann-Schwinger equation

T = V + VG0T, (71)

following the discussion in Sect. 1. Using the fact that as the
energy approaches a bound-state at E = −B the T matrix
has a pole, one has:

T (E) = |B〉〈B|
E + B

+ regular terms. (72)

In this expression, the vertex function |B〉 is related to the
wavefunction |Ψ 〉 via

|ψ〉 = G0(−B)|B〉. (73)

In order to develop a formalism that is connected to the
bound-state Faddeev formalism, it is however more instruc-

tive to start directly from the Schrödinger equation. Expand-
ing

V = V0 + V1 + · · · , (74a)

B = B0 + B1 + · · · , (74b)

|Ψ 〉 = |Ψ0〉 + |Ψ1〉 + · · · . (74c)

gives the well-known first-order equation

(H0 + V0)|Ψ1〉 + V1|Ψ0〉 = −B0|Ψ1〉 − B1|Ψ0〉. (75)

In principle, an explicit solution is given by

|Ψ1〉 =
∑

α∈S\{−B0}

|Ψα〉〈Ψα|V1|Ψ0〉
−B0 − Eα

, (76)

whereS denotes the whole spectrum and the sum is generally
a sum over discrete states plus an integral over the continu-
ous spectrum (note that for simplicity it is assumed here that
there are no degeneracies in the spectrum). Using Eq. (76)
however requires a complete diagonalization of the leading-
order Hamiltonian, which is not convenient for calculations
based on Faddeev- and Faddeev-Yakubovsky equations that
by construction only give access to specific individual states.
Moreover, for the systems considered in this work almost all
contributions in Eq. (76) would come from discretized con-
tinuum of scattering states, which is numerically challenging.
It is therefore interesting and relevant to look for alternative
ways of solving for |Ψ1〉.

As a first step, one can rewrite Eq. (75) as

[−B0 − H0 − V0] |Ψ1〉 = [V1 + B1] |Ψ0〉. (77)

and recognize from this that Eq. (76) involves the full
leading-order Green’s function in spectral representation,
with the bound-state |Ψ0〉 subtracted. This subtraction is cru-
cial because

[−B0 − H0 − V0] |Ψ0〉 = 0 (78)

implies the operator on the right-hand side of Eq. (77) is
singular. It is the term −B1|Ψ0〉 on the right-hand side that
generates this subtraction. With this insight it is possible to
derive methods to deal with the problem. Using the definition
of the free Green’s function,

G0(z) = (z − H0)
−1, (79)

it is possible to further rewrite Eq. (77) as

[1 − G0(z)V0] |Ψ1〉 = G0(z) [V1 + B1] |Ψ0〉. (80)

with z fixed at −B0. For any z �= −B0, the kernel on the left-
hand side of Eq. (80) is regular, and it can therefore be solved,
after discretization, as a linear system of equations. Knowing
from Eq. (76) that the solution is actually well defined in
the limit z → −B0, numerical extrapolation can be used to
obtain |Ψ1〉.
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An alternative procedure is to consider a potential with
the leading-order bound state removed. This can be achieved
using the replacement [49–51]

V0 → V0 + λ|Ψ0〉〈Ψ0| (81)

in Eq. (80), with λ a large positive constant that moves the
bound state far away from the low-energy spectrum of inter-
est. This procedure is valid because the orthogonality condi-
tion for the first-order correction, 〈Ψ1|Ψ0〉 = 0, implies that
the modified equation is equivalent to original one. Numer-
ically, it gives excellent agreement with the extrapolation
method for a two-body test case.

B.2 Faddeev and Faddeev-Yakubovsky decomposition

For a three-body state one can write, in analogy to Eq. (30),
|Ψ1〉 = (1 + P)|ψ1〉 and insert this decomposition into
Eq. (77). Three-body interactions are neglected here to keep
the discussion as transparent as possible. Application of the
remaining two-body interaction can be simplified by exploit-
ing the symmetry of the full wavefunction, which implies that

V |Ψ 〉 = (1 + P)Ṽ |Ψ 〉, (82)

where Ṽ is the potential acting only on the specific pair of
particles used to define the Faddeev component |ψ〉. This
gives:[

−B0 − H0 − (1 + P)Ṽ0)
]
(1 + P)|ψ1〉

=
[
(1 + P)Ṽ1 + B1

]
(1 + P)|ψ0〉. (83)

Since (1 + P) commutes with the free Hamiltonian H0, one
can bring an application of (1 + P) to the left of each term
in this equation. While (1 + P) can in general have zero
eigenvalues, components that are in ker(1 + P) are clearly
irrelevant for the description of the physical bound state and
it is therefore possible to proceed with a simplified equation:[

G0(−B0)
−1 − Ṽ0

]
|ψ1〉

= Ṽ0P|ψ1〉 + Ṽ1(1 + P)|ψ0〉 − B1|ψ0〉, (84)

where G0(−B0)
−1 = −B0 − H0. Acting with G0(−B0) on

both sides of this one can perform a partial inversion by using
the Lippmann-Schwinger equation[

1 − G0Ṽ0

]
G = G0 (85)

for the full two-body Green’s function G associated with Ṽ .
This can then be eliminated in favor of the corresponding t
matrix by using

GṼ = G0t, (86a)

G = G0 + G0tG0, (86b)

for t = Ṽ + Ṽ G0t . Overall one arrives at:

[1 − G0t0P] |ψ1〉
= (G0 + G0t0G0)

[
Ṽ1(1 + P) + B1

]
|ψ0〉 (87)

with G0 = G0(−B0). This is an inhomogeneous integral
equation which involves exactly the same kernel as the Fad-
deev equation at leading order, whereas the terms on the
left-hand side are straightforward to calculate from known
quantities. As a final step one calculates |Ψ1〉 from |ψ1〉
in exactly the same way |Ψ0〉 is calculated from |ψ0〉. By
keeping three-body forces in the derivation one analogously
obtains Eq. (53) given in the main text.

It is useful to note that the same result can alternatively be
derived directly from a perturbative expansion of the Faddeev
equation

|ψ〉 = G0t P|ψ〉, (88)

setting |ψ〉 = |ψ0〉 + |ψ1〉 + · · · . To proceed it is important
to carefully regard the energy arguments of the operators,
noting that B = B0 + B1 + · · · :

G0(−B) = G0(−B0) + B1G0(−B0)
2 + · · · , (89a)

t (−B) = t0(−B0) − B1
d

dz
t0(z)

∣∣∣
z=−B0

+ t1(−B0) + · · · .

(89b)

The term involving the energy derivative in Eq. (89b) looks
peculiar, but, assuming the potential to be energy inde-
pendent, it can be shown by differentiating the Lippmann-
Schwinger equation that

d

dz
t0(z) = −t0(z)G0(z)

2t0(z). (90)

Using this and making use of the leading-order Faddeev equa-
tion,

|ψ0〉 = G0(−B0)t0(−B0)P|ψ0〉, (91)

to simplify some terms, one obtains

[1 − G0t0P] |ψ1〉
= B1(G0 + G0t0G0)|ψ0〉 + G0t1P|ψ0〉 (92)

All energy arguments are −B0 and have therefore been omit-
ted as well. Using again Eq. (91) as well as the Lippmann-
Schwinger equation for t1, Eq. (16) in the main text, it pos-
sible to show that

G0t1P|ψ0〉 = (G0 + G0tG0)Ṽ1(1 + P)|ψ0〉, (93)

so that indeed Eq. (92) is equivalent to Eq. (87)
The previous result is both reassuring and very useful

because it implies that in order to derive perturbative cor-
rections for four-body states one can simply start from the
Faddeev-Yakubovsky equations, avoiding a tedious detour
through the Schrödinger equation.
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A convenient starting point for this calculation is generic
matrix form of the Faddeev-Yakubovsky equations, analo-
gous to Eq. (37):(
1 − K̂

)
|ψ〉 = 0, (94)

with |ψ〉 = (|ψA〉, |ψB〉)T and

K̂ = G0t P̂, (95)

where three-body forces are again neglected for simplicity.
As before, one expands all quantities in this equation, care-

fully keeping track of the energy arguments. This gives(
1 − K̂0

)
|ψ1〉 = K̂1|ψ0〉, (96)

with

K̂0 = G0t0 P̂, (97a)

K̂1 = B1(G0 + G0t0G0) + G0t1 P̂. (97b)

All energy arguments in Eqs. (97a, b) are fixed now at
−B0 and have been omitted. Again the term involving t1 can
be rewritten in terms of Ṽ1 as

G0t1 P̂|ψ0〉 = (G0 + G0t0G0)Ṽ1(1 + P̂)|ψ0〉. (98)

With three-body forces included one obtains the slightly
more complicated K̂1 shown in Eq. (55) in the main text.

The fact that within the Faddeev(-Yakubovsky) formal-
ism one has to calculate B1 with an increasing number of
partial-wave components included to check convergence of
the numerical calculation renders the extrapolation method
discussed in Sect. B.1 unstable beyond the two-body sector.
At the same time, the projection method which modifies the
potential to remove the leading-order bound state from the
low-energy spectrum becomes impractical because for an A-
body state Eq. (81) involves an A-body potential, which is
expensive to handle computationally (at leading order) for
A > 3. Fortunately, it is possible to employ the projection
method directly at the level of Faddeev(-Yakubovsky) com-
ponents and make the replacement6

K0 → K0 + λ|ψ0〉〈ψ0| (99)

in Eq. (87), where K0 = G0t0P , and analogously for
Eq. (96). While this ensures that the kernel becomes reg-
ular, the solution of the modified equation, denoted by |Ψ̃1〉,
will not in general directly provide the correct solution |Ψ1〉
(obtained from |ψ1〉 by adding the appropriate permutations).
In particular, |Ψ̃1〉 may not be orthogonal to |Ψ0〉. It is how-
ever possible to simply project out the undesired component
by setting

|Ψ1〉 = |Ψ̃1〉 − |Ψ0〉〈Ψ̃1|Ψ0〉, (100)

6 Alternatively, one can work directly with the singular K0 and solve the
first-order equation as a linear least-squares problems using a singular
value decomposition (SVD).

which gives the desired solution. The correctness of the result
can be checked by evaluating

〈Ψ1|H0 + V0|Ψ1〉 + 〈Ψ1|V1|Ψ0〉 = −B0〈Ψ1|Ψ1〉, (101)

which follows from Eq. (75) since B0 is known from the
leading-order calculation.
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