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Abstract. In this work we investigate the possible condensation of tetraneutron resonant states in the
lower density neutron rich gas regions inside Neutron Stars (NSs). Using a relativistic density functional
approach we characterize the system containing different hadronic species including, besides tetraneutrons,
nucleons and a set of light clusters (3He, α particles, deuterium and tritium). σ, ω and ρ mesonic fields
provide the interaction in the nuclear system. We study how the tetraneutron presence could significantly
impact the nucleon pairing fractions and the distribution of baryonic charge among species. For this we
assume that they can be thermodynamically produced in an equilibrated medium and scan a range of
coupling strengths to the mesonic fields from prescriptions based on isospin symmetry arguments. We find
that tetraneutrons may appear over a range of densities belonging to the outer NS crust carrying a sizable
amount of baryonic charge thus depleting the nucleon pairing fractions.

1 Introduction

The essential identity of nuclear forces acting between nu-
cleons lies behind the idea of the possible existence of res-
onant tetraneutron states (4n). Long standing searches
of this four neutron state were initiated by studying
its possible formation in the break-up reaction 14Be →
10Be+ 4n [1]. Despite the fact that the existence of bound
tetraneutrons was theoretically excluded with high confi-
dence [2–8], no arguments able to rule out the resonant 4n
state were presented. A new splash of enthusiasm to stud-
ies of the four neutron resonance is motivated by a recent
experimental claim that such a state with an excitation
energy E4n = 0.83MeV and width Γ4n = 2.6MeV was
detected in the exchange reaction α+ 8He → 8Be+ 4n [9].
Intensive theoretical studies confirmed that tetraneutrons
can exist in the form of resonances. In ref. [10] and in what
can be assumed to be vacuum conditions its excitation en-
ergy and width were predicted to be E4n = 0.8MeV and
Γ4n = 1.4MeV, respectively. Larger values of these quan-
tities of about E4n = 7.3MeV and Γ4n = 3.7MeV were
also reported in [11]. Other robust theoretical approaches
predict even larger widths of tetraneutrons [2,7,12].

Such large widths seem to indicate that tetraneutrons
are not likely to exist under the form of stable aggregates
although this may be possible if confined by strong ex-
ternal fields [2,10]. The simplest system exhibiting such a
tetraneutron confinement could be associated to 8He. In
such a system, nuclear forces create a significant poten-
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tial barrier which prevents the break up of tetraneutrons
and confines them around α-cores. Along the same line, it
may be of interest to investigate whether in an extended
system, such as an strongly interacting nuclear matter
medium, the existence of these resonances could be due to
the presence of strong mesonic fields mediating nucleon-
nucleon forces. Such an effect could be crucial for the de-
scription of neutron rich matter, where the probability of
creation of a 4n resonance could be, in principle, statisti-
cally favoured. If the fraction of such resonant states was
high enough they could significantly affect the properties
of β-equilibrated nuclear matter even despite their associ-
ated short lifetime. NSs seem to be suitable places to help
shed light on the possible existence of tetraneutrons. As
we will argue later in the manuscript, these particles can
populate the stellar medium with an onset density that
can be well below nuclear saturation density. The main
question we address in this contribution is, thus, twofold.
First, whether tetraneutrons could exist in a neutron rich
medium and second, how they could affect its microscopic
properties.

The possible existence of tetraneutrons in a nuclear
medium is linked to their resonant character [3–8,12,
13]. An effective treatment based on non-fundamental
hadronic degrees of freedom has proven to be successful
when describing the interior of NSs at intermediate ener-
gies. Therefore, in this work we will consider the appear-
ance of tetraneutrons in β-equilibrated nuclear matter by
using a relativistic field theoretical model based on, be-
sides this new species, baryons, leptons, light clusters and
mesonic degrees of freedom in a similar fashion to that
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done in previous works [14–17]. Further, such a treatment
is also analogous to that followed for dibaryons in [18,
19]. Additional work on the presence of other resonances
has also been performed, for example in [20] where the
effects of the mass distribution and the associated mass-
dependent lifetimes of Δ(1232) resonances were partially
considered, although a full in-medium treatment is still
missing. Further works on this include [21–23]. It is impor-
tant to remark that for low densities further corrections
from correlations beyond a relativistic mean field (RMF)
treatment are needed to precisely characterize the system.
The inhomogeneous phases yield an optimized and lower
free energy when compared to that of homogeneous mat-
ter. This determines what heavier clusters (nuclei) appear
in the system at fixed temperature, density and proton
fraction. Some approaches obtain the actual matter con-
figuration analyzing energy functionals with contributions
including that from the bulk, computed in the RMF the-
ory [24] or Brueckner-Hartree-Fock theory [25] for uniform
nuclear matter from the neutron and proton densities, sur-
face, exchange (if needed), electron and Coulomb terms.
Microscopic simulations can also provide a deeper knowl-
edge, see [26,27]. As a first approach, the present con-
tribution can provide a preliminary view on the species
composition in a β-equilibrated gaseous system using an
effective description. In this spirit we will consider a pre-
scribed minimal coupling of these resonances to mesonic
fields and solve the set of self-consistent equations arising.
Within this framework, tetraneutrons, being scalar enti-
ties with non zero baryon charge, can be represented by a
single-component complex field.

By using an approach based on specifically targeting
resonant states [28] and taking into account the finite
quantum mechanical width of these particles one could ex-
plicitly introduce this ingredient to the underlying RMF
model. In particular and as a result, the calculation of the
contribution of tetraneutrons to thermodynamic quanti-
ties, such as pressure or energy density, is performed in
a different fashion than for other non-resonant states due
to the inclusion of a mass distribution function ρ4n(m).
This approach has been applied in various versions of the
hadron resonance gas model for the description of exper-
imental hadron multiplicities produced in heavy ion col-
lisions [29,30]. Technically, it involves an integration over
masses exceeding the dominant decay channel threshold,
mth

4n, while ρ4n(m) gives an integration weight. In this con-
tribution we set mth

4n = 4mn, with mn being the neutron
mass, and use a relativistic Breit-Wigner distribution cen-
tered at m = m4n ≡ 4mn + E4n with an associated width
Γ4n to describe the spread of the tetraneutron mass as we
discuss later.

The structure of this contribution is as follows. In
sect. 2 we present the Lagrangian model used and describe
the hadronic content including bosonic and fermionic
species. We introduce the formalism to treat the mass
spread of the tetraneutron resonances under the approx-
imation taken. Later, in sect. 3, we focus on the effect
of the tetraneutron condensate and discuss its impact on
the pressure, density and nucleon pairing. We also explain
other thermodynamical considerations when solving our

set of self-consistent equations. In sect. 4 we present our
results and discuss the baryonic charge fraction carried
by the tetraneutron resonance in the range of densities al-
lowing their condensation. We discuss the constraints to
bear in mind when considering our results with non-zero
fraction of tetraneutrons, putting especial emphasis in the
decay width values that can accommodate such solutions.
Finally, in sect. 5, we give our conclusions.

2 Lagrangian model and resonances

The model Lagrangian considered in our work includes
contribution of nucleons i.e. protons (p) and neutrons (n),
electrons (e), light nuclear clusters (deuterons, tritiums,
3He nuclei and α-particles) as well as tetraneutrons in a
zero temperature, electrically neutral and β-equilibrated
medium. Note that the Δ(1232) resonance will be likely
produced [20,23] at much higher densities (several times
nuclear saturation density) than those of interest to this
work and will not be considered. Thus we will restrict to
the exploration of the finite-width effects only regarding
the condensation of tetraneutrons.

In our modelling nuclear interaction is mediated by
vector-isoscalar ω, vector-isovector ρ and scalar-isoscalar σ
mesons. Baryons and stable nuclear clusters are coupled to
mesons within a minimal coupling scheme which is exhaus-
tively described in refs. [14–17]. Due to the lack of knowl-
edge of the tetraneutron couplings we also choose these
resonances to be coupled in the same fashion. In addition,
to include further corrections due to finite size of tetra-
neutrons we consider a spatial radial extent for these res-
onances up to R ∼ 5 fm as it is quite close to their reported
size [13]. This value is significantly larger than ∼ 0.4 fm
found for nucleons from analysis of hadron multiplicities
measured in heavy ion collisions [29,30]. Therefore, al-
though we consider the present value of R as an overesti-
mated approximation of the in-medium spatial extent of
tetraneutrons, we include it in order to account for effects
of their finite size. Coupling strengths are parametrized by
constants gjω, gjρ and gjσ in terms of the nucleon ones (gω,
gρ and gσ) as gjω = xjωgω, gjρ = xjρgρ and gjσ = xjσgσ.
Let us remind here that these coupling ratios are largely
uncertain in our calculation as we will discuss later. Here
the index j runs over the species considered. Values of
gω = 9.479, gρ = 8.424 and gσ = 8.487 are chosen in
order to reproduce zero pressure, binding energy per nu-
cleon equal to 16.3MeV for the symmetric nuclear matter
ground state at saturation density n0 = 0.153 fm−3 as
well as the symmetry energy coefficient asym = 32.5MeV.
Vacuum rest masses of nucleons and stable nuclear clus-
ters are defined as in ref. [16] while for mesonic masses we
used [31]. The mass of tetraneutrons m4n = 4mn + E4n

is given in terms of mn and their excitation energy [9].
For electrons we set me = 0.511MeV. In addition, we as-
sume no magnetic field is present. If that was the case a
more detailed analysis including polarization effects [32,
33] should be included.

Let us analyze the different contributions in the model
Lagrangian used. First, it includes fermionic terms

Lf = f(i /Df − m∗
f )f, (1)
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of nucleons, electrons, tritiums and 3He nuclei. Here f
stands for the Dirac bispinor. Contribution of deuterons
is described through the Lorentz vector field dμ (we sum
over repeated indexes)

Ld =
1
4
(Ddμdν − Ddνdμ)∗(Dμ

d dν − Dν
ddμ) − 1

2
m∗2

d d∗μdμ.

(2)
The Lagrangian term for α-particles is written as

Lα =
1
2

[
(Dαμα)∗Dαμα − m∗2

α α∗α
]
. (3)

Finally, the contribution of tetraneutrons is described with
a Lorentz scalar field φ averaged over the Breit-Wigner
mass distribution

ρ4n(m) = N
m2

4nΓ4n

(m2 − m2
4n)2 + m2

4nΓ 2
4n

, (4)

with N a normalization constant. The expression for the
resonant tetraneutron Lagrangian is

L4n =
∫ ∞

mth
4n

dm
ρ4n(m)

2
[
D∗

4nμφ∗Dμ
4nφ

− (m + δm4n − g4nσσ)2φ∗φ
]
. (5)

In our prescription, covariant derivatives are defined as

iDμ
j = i∂μ − gjωωμ − gjρIj · ρμ, (6)

where Ij is the isospin vector of the corresponding particle
species. The isospin third component I3

j = Qj − Bj

2 is
defined through the electric Qj and baryonic Bj charges.
In the case of nucleons medium masses are m∗

j = mj −
gjσσ while for stable nuclear clusters, instead, m∗

j = mj +
δmj − gjσσ. In addition, in our setting the medium mass
of tetraneutrons is defined as

m∗2
4n =

∫ ∞

mth
4n

dmρ4n(m) (m + δm4n − g4nσσ)2. (7)

Note, that for Γ4n = 0 the expression of m∗
4n recovers the

form of stable species since the mass distribution ρ4n(m)
acts as Dirac δ-function of argument m − m4n.

It is already known that effective medium masses
of stable nuclear clusters suffer a shift of their binding
and excitation energies from the Pauli blocking correc-
tions [14]. Following the formalism of ref. [17] we write
the corresponding mass shift (including tetraneutrons) as

δmk =
Zk

n0
(mpnp − εp) +

Nk

n0
(mnnn − εn), (8)

where the index k labels the aforementioned species, Zk

and Nk are their proton and neutron numbers, while nN

and εN with N = n, p represent the particle and energy
densities of gas nucleons of a given sort. It is worth men-
tioning at this point that this correction is included in [17]
for light systems starting from A = 2 (deuteron) even if
it seems to be more justified for medium to heavy nu-
clei. However, it has proven to give a reasonable effective

Table 1. Set of different values of x4nω, x4nσ and Γ4n used in
this work for both values of R4n = 0, 5 fm considered. Onset
and dissolution densities of tetraneutrons nos

4n, ndis
4n are also

shown.

Set x4nσ/4 x4nω/4 (nos
4n − ndis

4n )/n0 Γ4n [MeV]

A 1.0 1.0 0.13–0.20 22.0

B 0.85 1.0 0.05–0.14 9.0

energy shift for light clusters and, in the same spirit, we
introduce this Pauli blocking shift for the tetraneutron res-
onance. We will nevertheless later discuss the validity of
our ansatz. Further, a few-body treatment would involve
more refined calculations such as those claimed in [34]
where they use a method based on an exact integral ver-
sion of the Faddeev-Yakubovsky equations governing the
4-fermion system proposed by Alt, Grassberger, and Sand-
has (AGS) [35,36] or in [37] for α-particles, however the
high complexity of our many-body system prevents its ap-
plication in this context.

Mesonic contributions to the Lagrangian are the ones
of free vector (ω and ρ) and scalar (σ) fields in addition
to the well known self-interaction of σ-field [15–17,19,20,
23,31,38]

Uσ = − b

3
mn(gσσ)3 − c

4
(gσσ)4. (9)

We set b = 6.284 × 10−3 and c = −3.492 × 10−3 so
the present model fits the incompressibility factor K0 =
250MeV and the effective nucleon mass m∗

N = 0.75mN

at saturation density of symmetric nuclear matter. Note
that, although allowed, we do not include other possi-
ble non-linear terms involving ω and ρ mesons in order
to keep our modelling simple. Regarding the density de-
pendence of the symmetry energy slope we find it to be
L = 91.2MeV in our model. This is somewhat larger than
the global average value around L = 61MeV and more in
line with values arising from studies of nuclear masses [39]
and heavy-ion collisions [40], see fig. 24 in [41].

Isoscalar couplings of stable clusters are set as in
ref. [16]. This set up is consistent with the values of
their binding and dissociation energies [14] as well as
with experimental predictions of the Mott transition den-
sities [42].

A more careful discussion involves the resonant tetra-
neutron states. At the moment there is neither theoret-
ical nor experimental information about their coupling
strengths. Therefore, the existing degree of uncertainty
only permits performing a study in an exploratory fashion.
In this spirit and following [17] we will consider the two
sets shown in table 1 where tetraneutron-meson couplings
are set x4nω/A = 1 and x4nσ/A = 0.85 or 1 with A = 4. As
we will later discuss the x4nσ parameter is the most influ-
ential in our solution and if taken larger than the quoted
values it could overpredict tetraneutron onset densities.
Isovector couplings are set the same for all particle species,
i.e. xjρ = 1 except electrons (xeω = xeρ = xeσ = 0). This
simple parametrization in terms of fractional ratios xij is
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well tested and proven to be successful in many previous
works [14–17,20].

The spatial extent of tetraneutrons is probably larger
than the one of nucleons and bound light nuclear clus-
ters [13]. This gives rise to additional repulsion between
these resonances, which is accounted for by the vector me-
son driven repulsion and Pauli blocking only in part. In
addition, the finite size of tetraneutrons can lead, in prin-
ciple, to their overlapping. Including an excluded volume
correction can effectively prevent this and take into ac-
count meaningfully the spatial extent of tetraneutrons as
we will see later. The order of magnitude estimate of the
baryonic density at which tetraneutrons overlap can be
obtained with their typical estimated size R ∼ 5 fm [13]
and corresponding eigenvolume V4n = 4π

3 R3. Using a typ-
ical fraction of baryonic charge carried by tetraneutrons
4n4n/nB about 0.1 (see fig. 3) and n4n = V −1

4n we obtain
nB � 30

πR3 � 0.08 fm−3, which is well above the range of
densities where tetraneutron may condense as we actually
find in this work. Thus since these resonances are expected
to exist only at small densities, the Van der Waals approx-
imation results sufficiently accurate. A corresponding cor-
rection can be introduced to the present model within the
prescription of [43]. According to it, the effective chemical
potential of tetraneutrons is reduced by 4V4np, where p is
the total pressure.

3 Effect of Bose condensation of
tetraneutrons

In our model, p can be written as a sum of partial pressures
of non-interacting quasiparticles, with the medium masses
m∗

j and effective chemical potentials defined through bary-
onic μB and electric μQ chemical potentials, mean values
of the scalar field σ and temporal components of the ω
and ρ the vector fields. In the case of tetraneutrons

μ∗
4n = μBB4n+μQQ4n−g4nωω−g4nρI

3
4nρ−4V4np (10)

while for other pointlike species

μ∗
j = μBBj + μQQj − gjωω − gjρI

3
j ρ. (11)

An excluded volume of tetraneutrons in eq. (10) is in-
troduced within the Van der Waals approximation. In
the grand canonical ensemble this framework leads to the
pressure pV dW (μ) = p0(μ − 4V pV dW ) defined through
the eigenvolume of particles V and the pointlike pres-
sure p0(μ). Formally, the excluded volume of tetraneu-
trons appears due to the repulsion between the hard nu-
clear cores. Therefore, a corresponding negative correction
−4V4np arises as for any repulsive term. Besides, physical
chemical potentials are μj = μBBj + μQQj . This form of
μj automatically insures β-equilibrium since in this case
μn − μp = μe by construction. Values of μB and μQ are
defined jointly by the value of the baryonic density nB

and the requirement of electrical neutrality. Finally, the
expression for the total pressure at zero temperature can

be written in the form

p =
∑

f

gf

6π2

∫ kf

0

dk k4

√
m∗2

f + k2
+

∑

b

ζ2
b (μ∗2

b − m∗2
b )

+
m2

ωω2

2
+

m2
ρρ

2

2
− m2

σσ2

2
+ Uσ, (12)

where df = 2 is the spin degeneracy factor and the Fermi

momentum kf =
√

μ∗2
f − m∗2

f . Note that formally eq. (12)
is an equation to be solved self-consistently in order to find
the pressure since it enters on the righthand side indirectly
through μ∗

4n. The first sum runs over all fermionic species.
The second one accounts for deuterons, α-particles and
tetraneutrons which at zero temperature exist as the Bose-
Einstein condensate (BEC) [44]. Note that this BEC is
significantly delocalized since it exists in the lowest energy
state and its wave function is characterized by a spatial
spread that is much larger than the typical cluster size
of a few fm. The real numbers ζb represent amplitudes of
zero modes in the field operators of these bosons. Physical
values of ζb are obtained by maximization of pressure, i.e.
from the condition

∂p

∂ζb
= 2ζb(μ∗2

b − m∗2
b ) = 0. (13)

This yields either ζb = 0 or

μ∗
b = m∗

b . (14)

Thus, the BEC contribution to eq. (12) is always zero. At
the same time the density of condensed bosons

nb =
∂p

∂μb
=

2ζ2
b μ∗

b

1 + 4V4n · 2ζ2
4nμ∗

4n

(15)

has a finite value if the previous equality is fulfilled. There-
fore, eq. (14) is a condition for the BEC existence. Note,
that the denominator of this expression is caused by the
fact that part of the system volume is excluded by non
pointlike tetraneutrons. Note that the same denomina-
tor appears in expressions for densities of the rest of all
species. For fermions it reads

nf =
gf

6π2

∫ kf

0
dk k3

1 + 4V4n · 2ζ2
4nμ∗

4n

. (16)

In the case of tetraneutrons it ensures that they never
overlap. Indeed, even at the maximal packing of tetraneu-
trons reached at ζ2

4nμ∗
4n → ∞ each of them occupies a cell

of volume Vcell = n−1
4n = 4V4n, which is four times larger

than their eigenvolume.
The energy density can be obtained from the previous

expressions considering contributions of both bosonic and
fermionic species, ε =

∑
f,b μjnj − p. Mean mesonic fields

can be self-consistently found from conditions of maximal
pressure ∂p

∂ω = 0, ∂p
∂ρ = 0 and ∂p

∂σ = 0. At given baryonic
density they define all termodynamic quantities of electri-
cally neutral nuclear matter at β-equilibrium.
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Γ = 7.0 MeV
Γ = 9 MeV
Γ = 10.1 MeV

4n
4n

/n
B

0

0,1

0,2

0,3

0,4

n B [fm -3]
0 5×10−3 0,01 0,015 0,02 0,025 0,03

Fig. 1. Baryonic fraction of the tetraneutron condensate as a
function of baryonic density for three values of Γ4n for pointlike
4n (R = 0) and set B. Dashed and dotted lines correspond to
physical condensation while solid line depicts the case where
Γ4n lies outside the physical condensation interval. For this
case Γmax = 10.2 MeV and Γmin = 8.2 MeV.

We paid special attention to the analysis of the pos-
sibility of the tetraneutron BEC existence. As mentioned
before, there is a large uncertainty regarding Γ4n values.
Therefore and in order to be practical we first set this pa-
rameter equal to an average value Γ4n � 9MeV which is
close to the inverse vacuum lifetime of the tetraneutron
τ ∼ 10−22 s as reported in ref. [9]. However, when con-
sidering the isospin asymmetric nuclear medium, τ could
be, in principle, modified by the interaction with neu-
trons [45] whereas rare collisions with other particles could
be neglected. Thus τ and, accordingly, Γ4n are expected
to suffer a possible in-medium widening with typical val-
ues belonging to the interval of Γ4n � 10–30MeV at large
densities. In our case, however, the reported densities for
condensation are well below nuclear saturation density, see
below.

On the other hand, the fraction of baryonic charge
carried by the tetraneutron BEC crucially depends on the
tetraneutron width. We found that for any realistic value
of x4nσ/4 ≤ 1 tetraneutrons can exist only in some limited
range of densities. At the same time, for any set of coupling
constants and value of the hard-core radius, the topology
of the solution can be different regarding the value of Γ4n.
For example, fig. 1 shows this fraction as a function of
baryonic density calculated for set B i.e. x4nσ/4 = 0.85,
x4nω/4 = x4nρ = 1 and R4n = 0 considering several values
of the tetraneutron width. As it is seen from the figure,
at small Γ4n (solid curve) some baryonic densities around
nB ∼ 0.0275 fm−3 support the simultaneous existence of
two different values of the tetraneutron fractions, which is
unphysical. This situation happens only for the tetraneu-
tron widths smaller than some critical value Γmin.

n B = 0.027 fm -3

Γ 4n = 6 MeV
Γ 4n = 7 MeV
Γ 4n = 7.5 MeV
Γ 4n = 8 MeV

μ
4n*

 - 
m

4n*
 [M

eV
]

−4

−2

0

2

4

4n 4n/ n B

0 0,1 0,2 0,3 0,4 0,5

Fig. 2. Difference of the effective chemical potential and mass
of pointlike tetraneutrons (R = 0) as function of the baryonic
charge fraction carried by them for four values of Γ4n and set
B. Baryonic density is set nB = 0.027 fm−3.

In order to understand this behaviour let us discuss
now the possible appearance of two solutions for a given
density of tetraneutrons. The problem of finding n4n can
be solved in two steps. The first one corresponds to solv-
ing the field equations for σ, ω and ρ for some arbitrary
amplitude of the zero mode of tetraneutrons ζ4n. With
these mean mesonic fields one can find the effective mass
m∗

4n and chemical potential μ∗
4n of tetraneutrons. Since

the amplitude of zero mode and density of tetraneutrons
are related by eq. (15), then μ∗

4n and m∗
4n can be con-

sidered functions of n4n. On the second step n4n can be
found by requiring μ∗

4n = m∗
4n, which agrees with the con-

dition (14) for the existence of the tetraneutron BEC.
Figure 2 illustrates the situation when at small Γ4n the
condition μ∗

4n = m∗
4n can be fulfilled in different man-

ners. This shows how the two solutions for a condensate
of tetraneutrons with Γ4n = 7MeV at nB = 0.027 fm−3

depicted in fig. 1 arise. At the same time, the larger val-
ues of the tetraneutron width suppress these aggregates
making their condensation impossible since in this case
the condition μ∗

4n = m∗
4n can not be fulfilled by any value

of n4n.
Therefore, we conclude that a physically meaningful

Γ4n should be larger than Γmin. Furthermore, in fig. 1 large
values of Γ4n (dotted curve) make the fraction of tetraneu-
trons tiny, while at Γ4n exceeding some critical value Γmax,
they totally disappear. This allows us to conclude that for
a single and physically correct solution with non zero frac-
tion of tetraneutrons (dashed and dotted curves on fig. 1)
we must have Γmin ≤ Γ4n ≤ Γmax. We show in fig. 3 the
coloured blue (pink) bands of Γ4n providing existence of
a condensate of pointlike (finite size) tetraneutrons as a
function of x4nσ/4 at x4nω/4 = 1. This phenomenological
constraint indicates the need for a careful determination
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Fig. 3. Colour bands depicting the allowed regions for pointlike
(R = 0) and finite-size (R = 5 fm) tetraneutron condensate as a
function of x4nσ/4 at x4nω/4 = x4nρ = 1. Overlapping regions
appear in magenta.

of the in-medium width Γ4n and its dependence on the
coupling x4nσ.

4 Results

We now comment on the results found in our calculation.
Let us first remind that, in what follows, our analysis and
calculations are performed for the two selected values of
coupling parameter sets, A and B, and two values of spa-
tial tetraneutron extent, R, and decay width, Γ4n [46].
Since set A predicts larger baryonic densities where these
resonances may exist, increased Γ4n values are allowed
(see fig. 1). It is important to notice that in what follows
we have chosen values of Γ4n allowing a physical BEC for
both sets A and B but if values are outside the interval,
tetraneutrons would not be able to exist as predicted in
our scenario. Values of x4nω and x4nσ which correspond
to different onset, nos

4n, and dissolution densities, ndis
4n , of

tetraneutrons are listed in table 1.
In fig. 4 we show the total energy per nucleon ε/nB −

mn for set A (solid line) and set B (dashed line) as a func-
tion of baryonic density. We also depict the energy of a
tetraneutron free system for reference. A pointlike treat-
ment for tetraneutrons has been used. It can be clearly
seen that for the two parameter sets used, matter with
tetraneutrons is energetically favoured over that where
tetraneutrons are not allowed. In other words, the pres-
ence of tetraneutrons in neutron rich matter is energeti-
cally favoured even despite the short lifetime of these res-
onances.

In order to better understand the role of tetraneutrons
in the nuclear system under study we plot in fig. 5 the
difference of effective chemical potentials and masses of
nuclear clusters in the case of pointlike (R = 0) tetraneu-

Fig. 4. Energy per nucleon as a function of baryonic den-
sity for parameter sets A and B and tetraneutron free matter.
Tetraneutrons are included in a pointlike (R = 0) approxi-
mation. The density range corresponding to the tetraneutron
condensation signals the more energetically stable states.

trons as a function of baryonic density for sets A and B.
It is convenient to analyse this quantity since a nuclear
species j can exist only if μ∗

j − m∗
j ≥ 0 in the case of

fermions or μ∗
j − m∗

j = 0 in the case of bosons. The re-
gion of the tetraneutron BEC existence is defined by the
condition μ∗

4n −m∗
4n = 0 appearing as horizontal line seg-

ments of dashed (set A) and solid (set B) green curves. It
is clearly seen that in the case of set A all nuclear clus-
ters have μ∗

j − m∗
j < 0 in the region of the tetraneutron

BEC. In other words, tetraneutrons do not coexist with
these clusters. The same situation happens in the case of
set B for all clusters except α-particles, which can exist
simultaneously with tetraneutrons in a narrow range of
nB = 0.007–0.01 fm−3. At the same time, fractions of α
and 4n in the overlap region are so small that their im-
pact on each other is almost absent. This explains why for
deuterons, tritiums, 3He and α-particles μ∗

j − m∗
j is the

same for sets A and B. As we have verified, accounting
for the finite size of tetraneutrons leads to the decoupling
of regions where stable nuclear clusters and tetraneutrons
can coexist. This happens due to the increase of the tetra-
neutron onset density. As a generic conclusion we can say
that the present couplings of stable nuclear clusters dis-
favour their coexistence with tetraneutrons.

In fig. 6 we show the baryonic charge fraction for set A
(upper panel) and set B (lower panel). We depict the dif-
ferent components, i.e. n (blue), p (red) and tetraneutron
(green) species as a function of baryon density nB calcu-
lated for R = 0 (dashed line) and R = 5 fm (solid line). We
also include the 4n free solution (thick solid line). We have
scaled n curves by a factor 1/5 and p curves by a factor of
10 in order to facilitate the reading. In our β-equilibrated
system the fraction of protons remains tiny at all densities
and the appearance of light clusters is suppressed due to
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Fig. 5. Difference of effective chemical potentials and masses of
different species in the case of pointlike (R = 0) tetraneutrons
as a function of baryonic density for sets A and B. The regions
of the tetraneutron BEC is shown by the horizontal line sig-
ments of dashed (set A) and solid (set B) green curves signaling
the vanishing value for the corresponding density range. Note,
that 3He, deuterium and tritium do not condensate nor coexist
with tetraneutrons, while for α-particles in the case of set B
there is an narrow overlapping region at nB = 0.007–0.01 fm−3.

the combined effect of the negative contribution of elec-
tric chemical potential and the selected set of coupling
parameters. We can see that onset (dissolution) densities
of tetraneutrons are larger (smaller) when including finite
volume corrections.

Note that the particle density fraction of 4n is obtained
dividing each value on the tetraneutron curves by B4n = 4
since their particle number density is B4n times smaller
than the corresponding baryonic charge density. We can
see that for the two parameter sets used in this work
x4nσ/4 � 1 and 4n are restricted to the lower densites
in a small fraction up to ∼ 4% of the baryon density. In
the case of the depicted set A (upper panel) 4n exist in the
range nB � (0.02–0.031) fm−3, in line with typical Mott
densities. For densities larger than those it is not so ener-
getically favourable to gather charge into these resonances
due to Pauli blocking.

To illustrate this we show in fig. 7 the mass shift in-
duced by Pauli blocking for the case of two sets of cou-
plings, A and B, for pointlike tetraneutrons and for α-
particles. The effect of this term in eq. (8) clearly induces
an extra energetic cost for composite species since δm > 0.
It is also seen that in the case of tetraneutrons it is about
two times stronger than for the case of α-particles. This is
caused by the fact that most of the Pauli blocking induced
shift of mass comes through neutrons, while the contribu-
tion of protons can be neglected due to their small density.
Consequently, with a good accuracy we can conclude that
δm4n

δmα
� N4n

Nα
= 2. However, as we will see later there are

additional dependencies on the energy density that can

B i
 n

i/n
B

0
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0,1

0,15
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n B [fm -3]
0,015 0,02 0,025 0,03 0,035

B i
 n

i/n
B
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0,05

0,1

0,15
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n B [fm -3]
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Fig. 6. Baryonic charge fraction for the n (blue), p (red) and
tetraneutron (green) components as functions of baryon den-
sity for set A (upper panel) and B (lower panel). For each
species we plot R = 0 (dashed line) and R = 5 fm (solid line)
cases along with the 4n free solution (thick solid). The rest
of species are omitted since they mostly do not coexist with
tetraneutrons (see fig. 5). We have scaled n curves by a factor
1/5 and p curves by a factor of 10 in order to facilitate the
reading. See text for details.

overcome this fact and lead to an energetically favourable
solution where tetraneutrons are indeed present.

In order to further explore the microscopic conse-
quences of the presence of tetraneutrons we have studied
the nucleon pairing into spin-zero Cooper pairs. We have
selected the most attractive 1S0 channel using for this pur-
pose the strategy of ref. [47]. Note that we consider the
BCS approximation although more refined treatments are
indeed possible [48,49] quoting in particular those includ-
ing short-range and long-range correlations to account for
medium effects and polarization [50,51]. The dependence
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Fig. 7. Mass shift for pointlike (R = 0) tetraneutron (green)
and alpha particle (blue) species for parameter sets A (solid
line) and B (dashed line) as a function of baryonic density nB .

of the nucleon pairing gap ΔN on its momentum k is de-
fined by the gap equation

ΔN (k) = − 1
π

∫ ∞

0

dk′ k′2V (k, k′)ΔN (k′)
√

(εN (k′,m∗
N ) − μ∗

N )2 + Δ2
N (k′)

,

(17)
where εN (k′,m∗

N ) =
√

k′2 + m∗2
N and the matrix elements

of the two-nucleon interaction potential V are

V (k, k′) =
∫ ∞

0

dr r2j0(kr)V (r)j0(k′r). (18)

Here j0 denotes the first kind Bessel function of order
zero. The consistency with the present model Lagrangian
is provided by the Yukawa parametrization of V , which
includes repulsive contributions from the ω and ρ mesons
as well as an attractive one from the σ meson. Thus, in
the coordinate space

V (r) =
A

r

[
g2

ωe−mωr +
(gρ

2

)2

e−mρr − g2
σe−mσr

]
. (19)

A phenomenological parameter A = 0.0435 is chosen in or-
der to provide reasonable characteristics of this potential.
Its minimum is located at r = 0.61 fm and has a depth of
50 MeV. The factor 1

2 in the ρ-meson term comes from the
nucleon isospin. Note, that such a potential can be derived
within the one boson exchange (OBE) approximation [52].
Safely, as it has been shown in [53] for standard BCS cal-
culations, gap energies are quite similar for different realis-
tic interactions and we choose this parametrization for the
sake of simplicity. We believe this treatment captures the
essence of the nucleon pairing in our diverse population
scenario.

The behaviour of the neutron pairing gap as a func-
tion of momentum is shown in fig. 8 for model set A (up-
per panel) and set B (lower panel). The baryonic den-
sity is fixed at nB = 0.0275 fm−3 for set A and nB =

n , R4n  = 0 fm
n , R4n  = 5 fm
n , no 4n

Δ
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Fig. 8. Neutron pairing gap as a function of momentum for
sets A (upper panel) and B (lower panel). We depict the cases
of pointlike tetraneutrons (thin dashed line) and R = 5 fm
(thin solid line). The case with no tetraneutrons is shown with
thick solid line. For the tetraneutron free case neutron Fermi
momenta kF = 0.9323 fm−1 (set A) and kF = 0.7625 fm−1 (set
B) correspond to nB = 0.0275 fm−3 and nB = 0.0150 fm−3,
respectively. These later values lie close to the maximum of the
baryonic charge fraction for tetraneutrons depicted in fig. 6.

0.0150 fm−3 for set B, close to the maximum of the bary-
onic charge fraction for tetraneutrons depicted in fig. 6.
We find that the corresponding gap for protons is much
smaller, in agreement with standard calculations [54] and
is not shown. We depict the cases of pointlike (thin dashed
line) and finite-size tetraneutrons with R = 5 fm (thin
solid line). The case with no tetraneutrons is shown with
thick solid line and for that case neutron Fermi momen-
tum is kF = 0.9323 fm−1 (set A) and kF = 0.7625 fm−1

(set B). When tetraneutrons are present set B yields more
pronounced differences at low momentum. This, in turn,
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Fig. 9. Ratio of densities of paired nucleons (neutrons in blue,
protons in red) in presence and in absence of tetraneutrons
npair/npair

no 4n as a function of baryon density calculated for sets
A (upper panel) and B (lower panel). Finite volume corrections
(solid line) and pointlike approximations (dashed line) are also
shown.

translates into the pairing fractions as we will later see in
the manuscript. We consider Γ4n values as they appear
in table 1. We can see that the main difference arises for
the low momentum when the BEC manifests more clearly
the difference among paired and unpaired neutrons. When
tetraneutrons are present the amplitude is somewhat de-
creased with respect to the case without them. In addition,
the dependence on the coupling ratio x4nσ along with the
decay width is nevertheless weak leading to slight changes
in the gap profile. Note that for values of Γ4n outside the
allowed bands (see fig. 3) no solution with tetraneutrons
would exist.

Pairing of nucleons is controlled by the gap ΔN , which
is strongly influenced by the tetraneutron BEC. Therefore,

this condensate also significantly changes the density of
paired particles. For nucleons it reads

npair
N =

∫ ∞

0

dk′

2π2

(

1− |εN (k′,m∗
N ) − μ∗

N |
√

(εN (k′,m∗
N ) − μ∗

N )2 + Δ2
N (k′)

)

.

(20)
We show in fig. 9 the behaviour of the ratios of densities
of paired nucleons in presence and in absence of tetraneu-
trons npair/npair

no 4n as a function of the baryonic density
for model sets A (upper panel) and B (lower panel). The
cases of finite-size (solid line) and pointlike tetraneutrons
(dashed line) are also shown. Clearly, before the tetraneu-
tron onset densities and beyond their dissolution ones this
fraction has a unit value. The situation changes once the
onset density for formation of the tetraneutron conden-
sate is reached (see actual values in table 1) as there is a
pronounced decrease for both nucleon types. As it is seen,
this reduction is larger for protons at densities belonging
to the region of the outer NS crust. Although our model
only considers light clusters it is worth noting that the ad-
dtional pressence of a fraction of heavier species, nuclei,
is to be considered in future works as it could lead to a
supression of the light bound clusters as found in [55].

5 Conclusions

We have explored the possible condensation of tetraneu-
trons in neutron rich matter inside Neutron Stars. We
assumed that they can be produced in a thermodynami-
cally equilibrated medium whose properties are controlled
by the corresponding chemical potentials. As a first step,
neglecting higher order correlations, we started by using a
relativistic density functional approach and we find that
scanning a prescribed range of couplings of tetraneutrons
to the σ, ω, ρ fields based on arguments of isospin sym-
metry, similar to those used in the literature for other
clusters, their decay width largely determines the actual
presence of a tetraneutron condensate. If that was the case
it could lead to a partial suppression of the S-wave nucleon
pairing manifested through a reduction of the fraction of
paired protons and neutrons in the system. This happens
due to a more energetically favourable combination of neu-
trons to tetraneutrons condensing to the lowest energy
state. Pauli blocking effects have been partially included
using an effective treatment in the same fashion already
used for stable nuclear clusters. In our model, the frac-
tion of tetraneutrons depends on their actual decay width
and, if allowed, it remains small (up to 4% of baryonic
density) restricted to densities about one tenth of nuclear
saturation density, thus we expect that they will have a
very mild impact on the equation of state of dense nuclear
matter or NS masses. We expect, however, that it could
most likely affect the microscopic behaviour of the neutron
rich matter in the crust. Further work is needed to clarify
this latter aspect and it is left for future contributions.
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Sarich, N. Schunck, M.V. Stoitsov, S. Wild, Phys. Rev.
Rev. C 82, 024313 (2010).

40. M.B. Tsang, Yingxun Zhang, P. Danielewicz, M. Famiano,
Zhuxia Li, W.G. Lynch, A.W. Steiner, Phys. Rev. Lett.
102, 122701 (2009).

41. P. Danielewicz, J. Lee, Nucl. Phys. A 922, 1 (2014).
42. K. Hagel et al., Phys. Rev. Lett. 108, 062702 (2012).
43. D.H. Rischke, M.I. Gorenstein, H. Stöcker, W. Greiner, Z.
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