Skip to main content
Log in

Hadronization within the non-extensive approach and the evolution of the parameters

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We review transverse momentum distributions of various identified charged particles stemming from high energy collisions fitted by various non-extensive distributions as well as by the usual Boltzmann-Gibbs statistics. We investigate the best-fit formula with the obtained \( \chi^2/ndf\) values. We find that the physical mass and \( \sqrt{s}\) scaling become more explicit with heavier produced hadrons in both proton-proton and heavy-ion collisions. The spectral shape parameters, in particular the temperature T and the non-extensive Tsallis parameter q, do exhibit an almost linear dependence with the centrality-dependence in heavy-ion collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Tsallis, J. Stat. Phys. 52, 479 (1988) and references therein

    Article  ADS  Google Scholar 

  2. A. Ortiz, G. Bencedi, H. Bello, J. Phys. G: Nucl. Phys. 44, 065001 (2017)

    Article  ADS  Google Scholar 

  3. H. Hasegawa, Phys. Rev. E 80, 011126 (2009)

    Article  ADS  Google Scholar 

  4. T. Osada, G. Wilk, Phys. Rev. C 77, 044903 (2008)

    Article  ADS  Google Scholar 

  5. STAR Collaboration, Phys. Rev. Lett. 97, 152301 (2006)

    Article  Google Scholar 

  6. BRAHMS Collaboration, Phys. Rev. Lett. 94, 162301 (2005)

    Article  ADS  Google Scholar 

  7. CMS Collaboration, JHEP 2010, 41 (2010)

    Google Scholar 

  8. CMS Collaboration, Phys. Rev. Lett. 105, 022002 (2010)

    Article  ADS  Google Scholar 

  9. PHENIX Collaboration, Phys. Rev. C 69, 034909 (2004)

    Article  Google Scholar 

  10. STAR Collaboration, Phys. Lett. B 637, 161 (2006)

    Article  ADS  Google Scholar 

  11. STAR Collaboration, Phys. Rev. C 71, 064902 (2005)

    Article  Google Scholar 

  12. G. Wilk, Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000)

    Article  ADS  Google Scholar 

  13. ALICE Collaboration, Eur. Phys. J. C 71, 1594 (2011)

    Article  ADS  Google Scholar 

  14. ALICE Collaboration, Eur. Phys. J. C 71, 1655 (2011)

    Article  ADS  Google Scholar 

  15. ALICE Collaboration, Phys. Lett. B 760, 720 (2016)

    Article  ADS  Google Scholar 

  16. T. Sjostrand et al., Comput. Phys. Commun. 135, 238 (2001)

    Article  ADS  Google Scholar 

  17. ATLAS Collaboration, New J. Phys. 13, 053033 (2011)

    Article  Google Scholar 

  18. STAR Collaboration, Phys. Rev. C 75, 064901 (2007)

    Google Scholar 

  19. PHENIX Collaboration, Phys. Rev. C 90, 054905 (2014)

    Article  ADS  Google Scholar 

  20. PHENIX Collaboration, Phys. Rev. D 83, 052004 (2011)

    Article  Google Scholar 

  21. PHENIX Collaboration, Phys. Rev. C 83, 064903 (2011)

    Article  Google Scholar 

  22. W.M. Alberico, A. Lavagno, P. Quarati, Eur. Phys. J. C 12, 499 (2000)

    Article  ADS  Google Scholar 

  23. W.M. Alberico, A. Lavagno, P. Quarati, Nucl. Phys. A 680, 94c (2001)

    Article  ADS  Google Scholar 

  24. R. Korus, St. Mrowczynski, M. Rybczynski, Z. Wlodarczyk, Phys. Rev. C 64, 054908 (2001)

    Article  ADS  Google Scholar 

  25. A. Khuntia, S. Tripathy, R. Sahoo, J. Cleymans, Eur. Phys. J. A 53, 103 (2017)

    Article  ADS  Google Scholar 

  26. M.D. Azmi, J. Cleymans, Eur. Phys. J. C 75, 430 (2015)

    Article  ADS  Google Scholar 

  27. J. Cleymans, G.I. Lykasov, A.S. Parvan, A.S. Sorin, O.V. Teryaev, D. Worku, Phys. Lett. B 723, 351 (2013)

    Article  ADS  Google Scholar 

  28. G. Wilk, Z. Wlodarczyk, Eur. Phys. J. A 40, 299 (2009) and references therein

    Article  ADS  Google Scholar 

  29. B. De, S. Bhattacharyya, G. Sau, S.K. Biswas, Int. J. Mod. Phys. E 16, 1687 (2007)

    Article  ADS  Google Scholar 

  30. I. Bediaga, E.M. Curado, J.M. de Miranda, Physica A 286, 156 (2000)

    Article  ADS  Google Scholar 

  31. C.Y. Wong, G. Wilk, Acta. Phys. Pol. B 42, 2047 (2012)

    Article  Google Scholar 

  32. C.Y. Wong, G. Wilk, L.J.L. Cirto, C. Tsallis, Phys. Rev. D 91, 114027 (2015)

    Article  ADS  Google Scholar 

  33. ALICE Collaboration, Phys. Lett. B 693, 53 (2010)

    Article  ADS  Google Scholar 

  34. B.C. Li, Y.Z. Wang, F.H. Liu, Phys. Lett. B 725, 352 (2013)

    Article  ADS  Google Scholar 

  35. C. Beck, E.D.G. Cohen, Physica A 322, 267 (2002) and references therein

    Article  ADS  Google Scholar 

  36. S. Acharya et al., Eur. Phys. J. C 78, 263 (2018) and references therein

    Article  ADS  Google Scholar 

  37. ALICE Collaboration, Phys. Lett. B 728, 25 (2014)

    Article  ADS  Google Scholar 

  38. ALICE Collaboration, Phys. Lett. B 758, 389 (2016)

    Article  ADS  Google Scholar 

  39. PHENIX Collaboration, Phys. Rev. Lett. 88, 242301 (2002)

    Article  Google Scholar 

  40. ALICE Collaboration, Phys. Lett. B 736, 196 (2014)

    Article  ADS  Google Scholar 

  41. ALICE Collaboration, Phys. Rev. C 91, 024609 (2015)

    Article  ADS  Google Scholar 

  42. Z.B. Tang et al., Phys. Rev. C 79, 051901(R) (2009)

    Article  ADS  Google Scholar 

  43. T.S. Biro, G. Purcsel, K. Urmossy, Eur. Phys. J. A 40, 325 (2009)

    Article  ADS  Google Scholar 

  44. K. Urmossy et al., J. Phys.: Conf. Ser. 805, 012010 (2017)

    Google Scholar 

  45. K. Shen, T. Biro, E. Wang, Physica A 492, 2353 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  46. K. Urmossy, G.G. Barnafoldi, T.S. Biro, Phys. Lett. B 701, 111 (2011)

    Article  ADS  Google Scholar 

  47. K. Urmossy, G.G. Barnafoldi, T.S. Biro, Phys. Lett. B 718, 125 (2012)

    Article  ADS  Google Scholar 

  48. A. Lavagno, Phys. Lett. A 301, 13 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  49. R. Hagedorn, Hot and Hadronic Matter: Theory and Experiment (Plenum Press, New York, 1995) p. 13

  50. M. Rybczynski, Z. Wlodarczyk, Eur. Phys. J. C 74, 2785 (2014)

    Article  ADS  Google Scholar 

  51. Gabor Biro et al., Entropy 19, 88 (2017)

    Article  ADS  Google Scholar 

  52. Gabor Biro et al., AIP Conf. Proc. 1853, 080001 (2017)

    Article  Google Scholar 

  53. CMS Collaboration, Eur. Phys. J. C 72, 2164 (2012)

    Article  ADS  Google Scholar 

  54. ALICE Collaboration, Phys. Rev. C 93, 034913 (2016)

    Article  ADS  Google Scholar 

  55. ALICE Collaboration, Phys. Lett. B 728, 216 (2014)

    Article  ADS  Google Scholar 

  56. ALICE Collaboration, Phys. Rev. C 111, 222301 (2013)

    Google Scholar 

  57. ALICE Collaboration, Phys. Rev. C 91, 024109 (2015)

    Article  Google Scholar 

  58. G. Wilk, Z. Wlodarczyk, AIP Conf. Proc. 1558, 893 (2015) and references therein

    ADS  Google Scholar 

  59. C.Y. Wong, Introduction to High-Energy Heavy-Ion Collisions (World Scientific, Singapore, 1994) p. 24

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keming Shen.

Additional information

Communicated by A. Peshier

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The experimental data in the figures or in this study is cited in the references and the fitting results have been listed in the context.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, K., Barnaföldi, G.G. & Biró, T.S. Hadronization within the non-extensive approach and the evolution of the parameters. Eur. Phys. J. A 55, 126 (2019). https://doi.org/10.1140/epja/i2019-12813-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12813-4

Navigation