Skip to main content
Log in

TiO2 Nanoparticle Improve Germination and Seedling Parameters and Enhance Tolerance of Bitter Vetch (Vicia ervilia L.) Plants under Salinity and Drought Stress

  • NANOBIOLOGY AND OMICS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The present study was conducted to investigate the effect of titanium dioxide nanoparticles (TiO2 NPs) in the regulation of germination and seedling parameters of Bitter vetch (Vicia ervilia L.). Plants under salinity stress [sodium chloride (NaCl)] and drought stress [polyethylene glycol 6000, H(OCH2CH2)nOH synonyms: (PEG)]. Experimental salinity was controlled in terms of dS/m at levels of 0 (control), 4 and 12 dS/m and PEG induced drought stress (0, –0.4, and –0.8 MPa). TiO2 NPs (0, 20, and 40 ppm) was applied to Bitter vetch seed at germination and seedling growth at 21 days. The experiment was a three (TiO2 NPs) × three (salt) × three (drought) factorial combination (for 27 treatments) with three replicates. After 21 day cultivation, plants were harvested to determine the germination parameters, root length, shoot length, root and shoot fresh weight, root and shoot dry weight, and the proline content. Exposure of salinity stress and drought stress alone reduced the germination parameter in the plant. However, the application of TiO2 NPs protects Bitter vetch plants against salinity and drought stress as well as improves the germination parameters, root length, shoot length, root fresh weight, shoot dry weight, root dry weight and shoot fresh weight compared to control. The application of TiO2 NPs significantly enhanced germination percentage (GP), germination rate (GR), germination index (GI), seed vigor index (SVI), root length (RL), shoot length (SL), root and shoot fresh weight (RSFW), root and shoot dry weight (RSDW) up to 19, 23, 38, 16, 85, 45, 59, and 14%, respectively, under severe drought stress. And the application of TiO2 NPs significantly enhanced (GP), (GR), (GI), (SVI), (RL), (SL), (RSFW), and (RSDW) up to 5.4, 46.5, 61.6, 8.5, 3.9, 33, 44, and 11%, respectively, under severe salinity stress. Based on biomass assay, it was found that the seedlings displayed good growth over control, demonstrating a positive effect of the TiO2 NPs treatment. In high concentrations of TiO2 NPs, no positive effects were observed on the germination characteristics of seed Bitter vetch. To conclude the use of TiO2 NPs can be improved by improving the seed germination properties of the plant Bitter vetch that cause increases plant’s establishment in natural areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. Bartels and R. Sunkar, Crit. Rev. Plant. Sci. 21, 1–36 (2005).

    Google Scholar 

  2. C. Wu, Q. Wang, B. Xie, et al., Afric. J. Biotechnol. 10, 17954–17961 (2011).

    Google Scholar 

  3. D. B. Egli and W. P. Bruening, Agronomy J. 92, 532–537 (2000).

    Article  Google Scholar 

  4. T. J. Flowers, J. Exp. Bot. 55, 307–319 (2004).

    Article  CAS  Google Scholar 

  5. H. C. J. Godfray, J. R. Beddington, I. R. Crute, et al., Am. Assoc. Advancem. Sci. 327, 812–818 (2010).

    CAS  Google Scholar 

  6. M. Tester and P. Langridge, Science (Washington, DC, U. S.) 327, 818–22 (2010).

    Article  CAS  Google Scholar 

  7. W. Zhuang, J. Li, M. Cao, et al., J. Wuhan Bot. Res. 28, 730–736 (2010).

    Google Scholar 

  8. P. Ahmad, A. A. Abdel Latef, A. Hashem, et al., Front. Plant Sci. 7, 347 (2016).

    Google Scholar 

  9. R. Munns and M. Tester, Ann. Rev. Plant Biol. 59, 651–681 (2008).

    Article  CAS  Google Scholar 

  10. FAO, FAO Land and Plant Nutrition Management Service (2010).

  11. S. S. Pourdad and A. Beg, “Safflower: A suitable oilseed crop for dry-land areas of Iran,” in Proceedings of the 7th International Conference on Development of Drylands (2003), pp. 32, 33.

  12. M. D. Kaya, G. Okçu, M. Atak, et al., Eur. J. Agron. 24, 291–295 (2006).

    Article  CAS  Google Scholar 

  13. M. Ashraf and H. Rauf, Acta Physiol. Plantarum. 23, 407–414 (2001).

    Article  CAS  Google Scholar 

  14. S. Ahmad, R. Ahmad, M. Y. Ashraf, et al., Pakist. J. Bot. 41, 647–654 (2009).

    Google Scholar 

  15. A. Maleki, A. Naderi, R. Naseri, et al., Bull. Env. Pharmacol. Life Sci. 2, 38–44 (2013).

    Google Scholar 

  16. M. D. F. Albuquerque and N. D. Carvalho, Seed Sci. Technol. (Switzerland) 31, 465–479 (2003).

    Article  Google Scholar 

  17. A. Soleymani, M. Hesam, and H. Shahrajabian, Int. J. Biol. Macromol. 4, 2330 (2012).

    Google Scholar 

  18. H. Etesami, H. Fatemi, and M. Rizwan, “Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review,” Ecotoxicol. Environ. Safety 225, 112769 (2021).

    Article  CAS  Google Scholar 

  19. A. Mattiello, A. Filippi, F. Pošcic, et al., Front. Plant Sci. 6, 1043 (2015).

    Article  Google Scholar 

  20. S. S. Hojjat and M. Kamyab, Russ. Agricult. Sci. 43, 61–65 (2017).

    Article  Google Scholar 

  21. S. S. Hojjat, J. Nabati, S. M. Mirmiran, and H. Hojjat, Azar. J. Agricult. 7, 17–25 (2020).

    Article  Google Scholar 

  22. S. S. Hojjat and H. Hojjat, Int. J. Food Eng. 1, 106–110 (2015).

    Google Scholar 

  23. S. S. Hojjat, Nanotechnol. Russ. 15, 204–211 (2020).

    Article  CAS  Google Scholar 

  24. S. S. Hojjat, J. Environ. Soil Sci. 2, 186–191 (2019).

    Google Scholar 

  25. J. Moll, A. Gogos, T. D. Bucheli, et al., J. Nano Biotechnol. 14, 1–8 (2016).

    Google Scholar 

  26. H. Shi, R. Magaye, V. Castranova, and J. Zhao, Part. Fibre Toxicol. 10, 1–33 (2013).

    Article  CAS  Google Scholar 

  27. E. Morteza, P. Moaveni, H. A. Farahani, and M. Kiyani, Springer Plus 2, 1–5 (2013).

    Article  CAS  Google Scholar 

  28. H. Mahmoodzadeh, R. Aghili, and Nabavi, Tech. J. Eng. Appl. Sci. 3, 1365–1370 (2013).

    Google Scholar 

  29. M. Hrubý, P. Cígler, and S. Kuzel, J. Plant Nutrit. 25, 577–598 (2002).

    Article  Google Scholar 

  30. L. Clément, C. Hurel, and N. Marmier, Chemosphere 90, 1083–1090 (2013).

    Article  CAS  Google Scholar 

  31. J. Faraji and A. Sepehri, J. Seed Sci. 41, 309–317 (2019).

    Article  Google Scholar 

  32. United States Environmental Protection Agency, Ecological Effects Test Guidelines Terrestrial Plant Toxicity, Vol. 1: Seedling Emergence (U.S. Environ. Protect. Agency, 1996).

  33. Int. Seed Testing Assoc., “International rules for seed testing,” Seed Sci. Technol. 4, 51–177 (1976).

  34. Int. Seed Testing Assoc., ISTA Rules (Int. Seed Test. Assoc., Zurich, Switzerland, 2009).

  35. I. D. Maguire, Crop Sci. 22, 176–177 (1982).

    Google Scholar 

  36. L. S. Bates, R. P. Waldren, and I. D. Teare, Plant Soil 39, 205–207 (1973).

    Article  CAS  Google Scholar 

  37. B. E. Michel and M. R. Kaufmann, Plant Physiol. 51, 914–916 (1973).

    Article  CAS  Google Scholar 

  38. H. Feizi, P. R. Moghaddam, N. Shahtahmassebi, and A. Fotovat, Biol. Trace Element Res. 146, 101–106 (2012).

    Article  CAS  Google Scholar 

  39. H. Feizi, M. Kamali, L. Jafari, and P. R. Moghaddam, Chemosphere 91, 506–511 (2013).

    Article  CAS  Google Scholar 

  40. E. H. Dehkourdi and M. Mosavi, Biol. Trace Element Res. 155, 283–286 (2013).

    Article  CAS  Google Scholar 

  41. A. Jaberzadeh, P. Moaveni, H. R. T. Moghadam, and H. Zahedi, Not. Botan. Horti Agrobot. Cluj-Napoca 41, 201–207 (2013).

  42. J. Moll, F. Klingenfuss, Widmer, et al., Soil Biol. Biochem. 111, 85–93 (2017).

    Article  CAS  Google Scholar 

  43. B. E. Michel and M. R. Kaufmann, Plant Physiol. 51, 914–916 (1973).

    Article  CAS  Google Scholar 

  44. F. Kizilağaç and U. Tural, Klin. Psikofarmakol. Bul. 27, 172 (2017).

    Google Scholar 

  45. S. S. Hojjat, C. Mozumder, T. Bora, and G. L. Hornyak, Nanotechnol. Russ. 14, 582–587 (2019).

    Article  Google Scholar 

  46. A. K. Parida and A. B. Das, Ecotoxicol. Environ. Safety 60, 324–349 (2005).

    Article  CAS  Google Scholar 

  47. A. M. Abbasi, M. H. Shah, T. Li, et al., J. Ethno Pharmacol. 162, 333–345 (2015).

    Article  CAS  Google Scholar 

  48. M. Farooq, M. Irfan, T. Aziz, et al., J. Agron. Crop Sci. 199, 12–22 (2013).

    Article  CAS  Google Scholar 

  49. H. Mahmoodzadeh, M. Nabavi, and H. Kashefi, “Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus),” J. Ornament. Plants 3, 25–32 (2013).

    Google Scholar 

  50. A. Jaberzadeh, P. Moaveni, H. R. T. Moghadam, and H. Zahedi, Not. Botan. Horti Agrobot. Cluj-Napoca 41, 201–207 (2013).

  51. F. L. Li, W. K. Bao, and N. Wu, Sci. Horticult. 127, 436–443 (2011).

    Article  Google Scholar 

  52. H. Li, X. Li, D. Zhang, et al., Excli J. 12, 89 (2013).

    Google Scholar 

  53. C. Laura, H. Charlotte, and M. Nicolas, Chemosphere 1, 1083–1090 (2013).

    Google Scholar 

  54. H. Feizi, P. R. Moghaddam, N. Shahtahmassebi, and A. Fotovat, Biol. Trace Element Res. 146, 101–106 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In addition, authors are thankful to all faculty members of the research center for plant sciences, Ferdowsi University of Mashhad, Iran, for their unconditional support to execute the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Saeid Hojjat.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyed Saeid Hojjat, Louis Hornyak, G. TiO2 Nanoparticle Improve Germination and Seedling Parameters and Enhance Tolerance of Bitter Vetch (Vicia ervilia L.) Plants under Salinity and Drought Stress. Nanotechnol Russia 17, 411–419 (2022). https://doi.org/10.1134/S2635167622030168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167622030168

Navigation