Skip to main content
Log in

Polymer Electrolytes Based on the Lithium Form of Nafion Sulfonic Cation-Exchange Membranes: Current State of Research and Prospects for Use in Electrochemical Power Sources

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The review analyzes and summarizes the results of investgations of lithium-conducting polymer electrolytes obtained via ion exchange from the initial H+ form of perfluorinated sulfonic cation-exchange membranes of the Nafion family. Salt forms of membranes not only retain the high strength and chemical stability inherent in the parent materials, but also have increased thermal stability (compared to the protonated form). The introduction of plasticizers (dipolar aprotic solvents and their mixtures) and modifying additives makes it possible to achieve a conductivity of 10−5–10−3 S/cm in the ambient temperature range. This makes polymer electrolytes based on lithiated Nafion membranes (Li-Nafion) very attractive for practical use instead of liquid nonaqueous electrolytes in electrochemical power sources. Such research is actively conducted in the field of lithium–oxygen, lithium−sulfur, and lithium-ion batteries, as well as batteries with a lithium metal negative electrode. It is proposed to use Li-Nafion not only as an electrolyte/separator, but also as a functional binder of electrode materials, as a thin barrier layer on a positive electrode or a microporous separator, as an artificial protective layer on the surface of a lithium metal electrode, etc. For all types of considered power sources, the results confirming the prospects for the development of electrochemical systems using Li-Nafion have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. A. Kusoglu and A. Z. Weber, Chem. Rev. 117, 987 (2017).

    Article  CAS  Google Scholar 

  2. M. B. Armand, in Solid State Batteries (Springer Netherlands, Dordrecht, 1985).

    Google Scholar 

  3. M. Doyle, M. E. Lewittes, M. G. Roelofs, S. A. Perusich, and R. E. Lowrey, J. Membr. Sci. 184, 257 (2001).

    Article  CAS  Google Scholar 

  4. A. Varzi, R. Raccichini, S. Passerini, and B. Scrosati, J. Mater. Chem. A 4, 17251 (2016).

  5. D. Y. Voropaeva, E. Y. Safronova, S. A. Novikova, and A. B. Yaroslavtsev, Mendeleev Commun. 32, 287 (2022).

    Article  CAS  Google Scholar 

  6. D. T. Hallinan and N. P. Balsara, Annu. Rev. Mater. Res. 43, 503 (2013).

    Article  CAS  Google Scholar 

  7. H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo, L. M. Rodriguez-Martinez, M. Armand, and Z. Zhou, Chem. Soc. Rev. 46, 797 (2017).

    Article  CAS  Google Scholar 

  8. I. Stenina, D. Golubenko, V. Nikonenko, and A. Yaroslavtsev, Int. J. Mol. Sci. 21, 5517 (2020).

    Article  CAS  Google Scholar 

  9. D. Y. Voropaeva, S. A. Novikova, and A. B. Yaroslavtsev, Russ. Chem. Rev. 89, 1132 (2020).

    Article  CAS  Google Scholar 

  10. N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, Adv. Colloid Interface Sci. 139, 3 (2008).

    Article  CAS  Google Scholar 

  11. A. B. Yaroslavtsev, Polym. Sci. Ser. A 55, 674 (2013).

    Article  CAS  Google Scholar 

  12. H. H. Gibbs and R. N. Griffin, US Patent 3041317 (1962).

  13. D. J. Connolly and W. F. Gresham, US Patent 3282875 (1966).

  14. B. R. Ezzell, W. P. Carl, and W. A. Mod, US Patent 4358412 (1982).

  15. D. Wu, S. J. Paddison, and J. A. Elliott, Energy Environ. Sci. 1, 284 (2008).

    Article  CAS  Google Scholar 

  16. A. Stassi, I. Gatto, E. Passalacqua, V. Antonucci, A. S. Arico, L. Merlo, C. Oldani, and E. Pagano, J. Power Sources 196, 8925 (2011).

    Article  CAS  Google Scholar 

  17. S. P. Ed. Rowland, Water in Polymers (American Chemical Society, Washington, 1980).

    Google Scholar 

  18. T. Kyu, M. Hashiyama, and A. Eisenberg, Can. J. Chem. 61, 680 (1983).

    Article  CAS  Google Scholar 

  19. I. M. Hodge and A. Eisenberg, Macromolecules 11, 289 (1978).

    Article  CAS  Google Scholar 

  20. S. C. Yeo and A. Eisenberg, J. Appl. Polym. Sci. 21, 875 (1977).

    Article  CAS  Google Scholar 

  21. H. R. Corti, F. Nores-Pondal, and M. Buera Pilar, J. Power Sources 161, 799 (2006).

    Article  CAS  Google Scholar 

  22. S. H. De Almeida and Y. Kawano, J. Therm. Anal. Calorim. 58, 569 (1999).

    Article  CAS  Google Scholar 

  23. E. A. Sanginov, R. R. Kayumov, L. V. Shmygleva, V. A. Lesnichaya, A. I. Karelin, and Y. A. Dobrovolsky, Solid State Ionics 300, 26 (2017).

    Article  CAS  Google Scholar 

  24. C. Bas, L. Reymond, A. Danerol, N. D. Alberola, E. Rossinot, and L. Flandin, J. Polym. Sci. Pol. Phys. 47, 1381 (2009).

    Article  CAS  Google Scholar 

  25. C. H. Ma, T. L. Yu, H. L. Lin, Y. T. Huang, Y. L. Chen, U. S. Jeng, Y. H. Lai, and Y. Sun Sen, Polymer 50, 1764 (2009).

    Article  CAS  Google Scholar 

  26. D. L. Feldheim, D. R. Lawson, and C. R. Martin, J. Polym. Sci. Pol. Phys. 31, 953 (1993).

    Article  CAS  Google Scholar 

  27. S. Quezado, J. C. T. Kwak, and M. Falk, Can. J. Chem. 62, 958 (1984).

    Article  CAS  Google Scholar 

  28. M. Wang, F. Zhao, and S. Dong, J. Phys. Chem. B 108, 1365 (2004).

    Article  CAS  Google Scholar 

  29. W. Navarrini, B. Scrosati, S. Panero, A. Ghielmi, A. Sanguineti, and G. Geniram, J. Power Sources 178, 783 (2008).

    Article  CAS  Google Scholar 

  30. G. Gebel, P. Aldebert, and M. Pineri, Polymer 34, 333 (1993).

    Article  CAS  Google Scholar 

  31. P. Aldebert, M. Guglielmli, and M. Pineri, Polymer J. 23, 399 (1991).

    Article  CAS  Google Scholar 

  32. S. Sachan, C. A. Ray, and S. A. Perusich, Polym. Eng. Sci. 42, 1469 (2002).

    Article  CAS  Google Scholar 

  33. H. Y. Liang, X. P. Qiu, S. C. Zhang, W. T. Zhu, and L. Q. Chen, J. Appl. Electrochem. 34, 1211 (2004).

    Article  CAS  Google Scholar 

  34. D. Y. Voropaeva, S. A. Novikova, T. L. Kulova, and A. B. Yaroslavtsev, Ionics 24, 1685 (2018).

    Article  CAS  Google Scholar 

  35. Y. Liu, Z. Cai, L. Tan, and L. Li, Energy Environ. Sci. 5, 9007 (2012).

    Article  CAS  Google Scholar 

  36. M. Doyle, M. E. Lewittes, M. G. Roelofs, and S. A. Perusich, J. Phys. Chem. B 105, 9387 (2001).

    Article  CAS  Google Scholar 

  37. D. Y. Voropaeva and A. B. Yaroslavtsev, Membr. Membr. Technol. 4, 276 (2022).

    Article  CAS  Google Scholar 

  38. C. Wu, C. Liao, T. Li, Y. Shi, J. Luo, L. Li, and J. Yang, J. Mater. Chem. A 4, 15189 (2016).

    Article  CAS  Google Scholar 

  39. E. A. Sanginov, E. Y. Evshchik, R. R. Kayumov, and Y. A. Dobrovol’skii, Russ. J. Electrochem. 51, 986 (2015).

    Article  CAS  Google Scholar 

  40. E. A. Sanginov, S. S. Borisevich, R. R. Kayumov, A. S. Istomina, E. Y. Evshchik, O. G. Reznitskikh, T. V. Yaroslavtseva, T. I. Melnikova, Y. A. Dobrovolsky, and O. V. Bushkova, Electrochim. Acta 373, 137914 (2021).

    Article  CAS  Google Scholar 

  41. R. R. Kayumov, L. V. Shmygleva, E. Y. Evshchik, E. A. Sanginov, N. A. Popov, O. V. Bushkova, and Y. A. Dobrovolsky, Russ. J. Electrochem. 57, 911 (2021).

    Article  CAS  Google Scholar 

  42. D. Voropaeva, S. Novikova, T. Xu, and A. Yaroslavtsev, J. Phys. Chem. B 123, 10217 (2019).

    Article  CAS  Google Scholar 

  43. J. Gao, C. Sun, L. Xu, J. Chen, C. Wang, D. Guo, and H. Chen, J. Power Sources 382, 179 (2018).

    Article  CAS  Google Scholar 

  44. Z. Cai, Y. Liu, S. Liu, L. Li, and Y. Zhang, Energy Environ. Sci. 5, 5690 (2012).

    Article  CAS  Google Scholar 

  45. L. Yang, J. Zeng, B. Ding, C. Xu, and J. Y. Lee, Adv. Mater. Interfaces 3, 1600660 (2016).

    Article  Google Scholar 

  46. R. Kuwertz, C. Kirstein, T. Turek, and U. Kunz, J. Membr. Sci. 500, 225 (2016).

    Article  CAS  Google Scholar 

  47. S. Burlatsky, R. M. Darling, D. Novikov, V. V. Atrazhev, V. I. Sultanov, T. Y. Astakhova, and L. Su, F. Brushett, J. Electrochem. Soc. 163, A2232 (2016).

    Article  CAS  Google Scholar 

  48. Z. Jin, K. Xie, and X. Hong, J. Mater. Chem. A 1, 342 (2013).

    Article  CAS  Google Scholar 

  49. K. Xu, Chem. Rev. 114, 11503 (2014).

    Article  CAS  Google Scholar 

  50. O. V. Bushkova, T. V. Yaroslavtseva, and Y. A. Dobrovolsky, Russ. J. Electrochem. 53, 677 (2017).

    Article  CAS  Google Scholar 

  51. Z. Zakaria, N. Shaari, S. K. Kamarudin, R. Bahru, and M. T. Musa, Int. J. Energy Res. 44, 8255 (2020).

    Article  CAS  Google Scholar 

  52. Y. Prykhodko, K. Fatyeyeva, L. Hespel, and S. Marais, Chem. Eng. J. 409, 127329 (2021).

    Article  CAS  Google Scholar 

  53. A. B. Yaroslavtsev and I. A. Stenina, Mendeleev Commun. 31, 423 (2021).

    Article  CAS  Google Scholar 

  54. D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, and G. Wang, Chem 5, 2326 (2019).

    Article  CAS  Google Scholar 

  55. Q. Yu, Y. Nie, Y. Cui, J. Zhang, and F. Jiang, Electrochim. Acta 182, 297 (2015).

    Article  CAS  Google Scholar 

  56. Y. Shi, C. Wu, L. Li, and J. Yang, J. Electrochem. Soc. 164, A2031 (2017).

    Article  CAS  Google Scholar 

  57. I. Nicotera, C. Simari, M. Agostini, A. Enotiadis, and S. Brutti, J. Phys. Chem. 123, 27406 (2019).

    CAS  Google Scholar 

  58. J. Gao, Q. Shao, and J. Chen, J. Energy Chem. 46, 237 (2020).

    Article  Google Scholar 

  59. K. Z. Walle, BabulalL. Musuvadhi, S. Wu, W.-C. Chien, R. Jose, S. J. Lue, J.-K. Chang, and C.-C. Yang, ACS Appl. Mater. Interfaces 13, 2507 (2021).

    Article  CAS  Google Scholar 

  60. K. Z. Walle, Y.-S. Wu, S.-H. Wu, J.-K. Chang, R. Jose, and C.-C. Yang, ACS Appl. Mater. Interfaces 14, 15259 (2022).

    Article  CAS  Google Scholar 

  61. K. Xu, Chem. Rev. 104, 4303 (2004).

    Article  CAS  Google Scholar 

  62. M. Marcinek, J. Syzdek, M. Marczewski, M. Piszcz, L. Niedzicki, M. Kalita, A. Plewa-Marczewska, A. Bitner, P. Wieczorek, T. Trzeciak, et al., Solid State Ionics 276, 107 (2015).

    Article  CAS  Google Scholar 

  63. M. Doyle, T. F. Fuller, and J. Newman, Electrochim. Acta 39, 2073 (1994).

    Article  CAS  Google Scholar 

  64. K. M. Diederichsen, E. J. McShane, and B. D. McCloskey, ACS Energy Lett. 2, 2563 (2017).

    Article  CAS  Google Scholar 

  65. E. R. Logan and J. R. Dahn, Trends Chem. 2, 354 (2020).

    Article  CAS  Google Scholar 

  66. F. M. Gray, Solid Polymer Electrolytes: Fundamentals and Technological Applications (New York, Wiley-VCH, Weinheim, 1991).

  67. N.-S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y.‑K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, and P. G. Bruce, Angew. Chemie Int. Ed. 51, 9994 (2012).

    Article  CAS  Google Scholar 

  68. T. Reddy, Ed., Linden’s Handbook of Batteries, 4th Ed. (McGraw-Hill Education, 2011).

    Google Scholar 

  69. Chemical Power Sources: A Handbook, Ed. by N. V. Korovin and A. M. Skundin (Moscow Power Engineering Institute, Moscow, 2003) [in Russian].

    Google Scholar 

  70. F. Schipper and D. Aurbach, Russ. J. Electrochem. 52, 1095 (2016).

    Article  CAS  Google Scholar 

  71. D. Aurbach, B. D. McCloskey, L. F. Nazar, and P. G. Bruce, Nat. Energy 1, 16128 (2016).

    Article  CAS  Google Scholar 

  72. J. W. Choi and D. Aurbach, Nat. Rev. Mater 1, 16013 (2016).

    Article  CAS  Google Scholar 

  73. T. Li, C. Wang, J. Cheng, J. Guo, A. Xiao, H. Hou, Q. Wang, B. Wang, X. Chen, and G. Cui, ACS Appl. Mater. Interfaces 12, 12857 (2020).

    Article  CAS  Google Scholar 

  74. Y. Zhang, S. Xie, D. Li, Y. Liu, C. Li, J. Liu, and H. Xie, ChemSusChem 15, e202200769 (2022).

    CAS  Google Scholar 

  75. H. Deng, Y. Qiao, S. Wu, F. Qiu, N. Zhang, P. He, and H. Zhou, ACS Appl. Mater. Interfaces 11, 4908 (2019).

    Article  CAS  Google Scholar 

  76. H. F. Mohamed, Y. Kobayashi, C. S. Kuroda, and A. Ohira, J. Phys. Chem. B 113, 2247 (2009).

    Article  CAS  Google Scholar 

  77. L. Qin, D. Zhai, W. Lv, W. Yang, J. Huang, S. Yao, J. Cui, W.-G. Chong, J.-Q. Huang, F. Kang, et al., Nano Energy 40, 258 (2017).

    Article  CAS  Google Scholar 

  78. H. Wang, X.-Z. Liao, L. Li, H. Chen, Q.-Z. Jiang, Y.‑S. He, and Z.-F. Ma, J. Electrochem. Soc. 159, A1874 (2012).

    Article  CAS  Google Scholar 

  79. S. Wu, Y. Qiao, H. Deng, and H. Zhou, J. Mater. Chem. A 6, 9816 (2018).

    Article  CAS  Google Scholar 

  80. V. V. Emets, V. A. Bogdanovskaya, O. V. Tripachev, S. V. Dolgopolov, and V. N. Andreev, Chem. Eng. Sci. 246, 117019 (2021).

    Article  Google Scholar 

  81. H. Cheng and K. Scott, Electrochim. Acta 116, 51 (2014).

    Article  CAS  Google Scholar 

  82. W.-J. Kwak, J. Park, T. T. Nguyen, H. Kim, H. R. Byon, M. Jang, and Y.-K. Sun, J. Mater. Chem. A 7, 3857 (2019).

    Article  CAS  Google Scholar 

  83. H. Lee, D. J. Lee, M. Kim, H. Kim, Y. S. Cho, H. J. Kwon, H. C. Lee, C. R. Park, and D. Im, ACS Appl. Mater. Interfaces 12, 17385 (2020).

    Article  CAS  Google Scholar 

  84. Q. Xiong, G. Huang, Y. Yu, C. Li, J. Li, J. Yan, and X. Zhang, Angew. Chemie Int. Ed. 61, e202116635 (2022).

    CAS  Google Scholar 

  85. E. M. Erickson, E. Markevich, G. Salitra, D. Sharon, D. Hirshberg, E. de la Llave, I. Shterenberg, A. Rosenman, A. Frimer, and D. Aurbach, J. Electrochem. Soc. 162, A2424 (2015).

    Article  CAS  Google Scholar 

  86. A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, and Y.‑S. Su, Chem. Rev. 114, 11751 (2014).

    Article  CAS  Google Scholar 

  87. D. Zheng, G. Wang, D. Liu, J. Si, T. Ding, D. Qu, X. Yang, and D. Qu, Adv. Mater. Technol. 3, 1700233 (2018).

    Article  Google Scholar 

  88. R. Kumar, J. Liu, J.-Y. Hwang, and Y.-K. Sun, J. Mater. Chem. A 6, 11582 (2018).

    Article  CAS  Google Scholar 

  89. S. S. Zhang, J. Power Sources 231, 153 (2013).

    Article  CAS  Google Scholar 

  90. V. S. Kolosnitsyn and E. V. Karaseva, Russ. J. Electrochem. 44, 506 (2008).

    Article  CAS  Google Scholar 

  91. S. A. Novikova, D. Y. Voropaeva, and A. B. Yaroslavtsev, Inorg. Mater. 58, 333 (2022).

    Article  CAS  Google Scholar 

  92. Z. Jin, K. Xie, X. Hong, Z. Hu, and X. Liu, J. Power Sources 218, 163 (2012).

    Article  CAS  Google Scholar 

  93. A. B. Yaroslavtsev, S. A. Novikova, D. Y. Voropaeva, S. A. Li, and T. L. Kulova, Batteries 8, 162 (2022).

    Article  CAS  Google Scholar 

  94. X. Yu, J. Joseph, and A. Manthiram, J. Mater. Chem. A 3, 2 (2015).

    Article  Google Scholar 

  95. Z. Jin, K. Xie, and X. Hong, RSC Adv. 3, 8889 (2013).

  96. G. Li, W. Cai, B. Liu, and Z. Li, J. Power Sources 294, 187 (2015).

    Article  CAS  Google Scholar 

  97. X. Liu, Z. Shan, K. Zhu, J. Du, Q. Tang, J. Tian, J. Power Sources 274, 85 (2015).

    Article  CAS  Google Scholar 

  98. Z. Li, P. Yang, Q. Pan, S. Jiang, L. Jiang, Y. Liu, G. Xu, and Y. Chen, Energy Technol. 9, 2100418 (2021).

    Article  CAS  Google Scholar 

  99. J.-Q. Huang, Q. Zhang, H.-J. Peng, X.-Y. Liu, W.‑Z. Qian, and F. Wei, Energy Environ. Sci. 7, 347 (2014).

    Article  CAS  Google Scholar 

  100. I. Bauer, S. Thieme, J. Bruckner, H. Althues, and S. Kaskel, J. Power Sources 251, 417 (2014).

    Article  CAS  Google Scholar 

  101. Z. Hao, L. Yuan, Z. Li, J. Liu, J. Xiang, C. Wu, R. Zeng, and Y. Huang, Electrochim. Acta 200, 197 (2016).

    Article  CAS  Google Scholar 

  102. D. B. Babu, K. Giribabu, and K. Ramesha, ACS Appl. Mater. Interfaces 10, 19721 (2018).

    Article  CAS  Google Scholar 

  103. J. Wang, M. Li, C. Liu, Y. Liu, T. Zhao, P. Zhai, and J. Wang, Ind. Eng. Chem. Res. 58, 14538 (2019).

    Article  CAS  Google Scholar 

  104. Y. He, S. Wu, Q. Li, and H. Zhou, Small 15, 1904332 (2019).

    Article  CAS  Google Scholar 

  105. B. Huang, H. Hua, P. Lai, X. Shen, R. Li, Z. He, P. Zhang, and J. Zhao, ChemElectroChem 9, e202200416 (2022).

    CAS  Google Scholar 

  106. Y. Hao, Y. Xing, H. Kong, and Y. Jiao, ChemElectroChem 8, 2329 (2021).

    Article  CAS  Google Scholar 

  107. J.-Q. Huang, Q. Zhang, and F. Wei, Energy Storage Mater. 1, 127 (2015).

    Article  Google Scholar 

  108. Q. Jin, K. Zhao, and X. Zhang, J. Power Sources 489, 229500 (2021).

    Article  CAS  Google Scholar 

  109. Q. Jin, X. Zhang, H. Gao, L. Li, and Z. Zhang, J. Mater. Chem. A 8, 8979 (2020).

    Article  CAS  Google Scholar 

  110. S. Jiang, Y. Lu, Y. Lu, M. Han, H. Li, Z. Tao, Z. Niu, J. Chen, Chem. - Asian J. 13, 1379 (2018).

    Article  CAS  Google Scholar 

  111. Y. Cai, Q. Jin, K. Zhao, X. Ma, and X. Zhang, Chinese Chem. Lett. 33, 457 (2022).

    Article  CAS  Google Scholar 

  112. Y. Cai, Q. Jin, K. Zhao, K. Shen, L. Wu, and X. Zhang, J. Alloys Compd. 900, 163444 (2022).

    Article  CAS  Google Scholar 

  113. T. Yan, F. Li, C. Xu, and H.-T. Fang, Electrochim. Acta 410, 140004 (2022).

    Article  CAS  Google Scholar 

  114. S. Li, L. Fan, and Y. Lu, Energy Storage Mater 18, 205 (2019).

    Article  CAS  Google Scholar 

  115. R. Xu, Y. Xiao, R. Zhang, X. Cheng, C. Zhao, X. Zhang, C. Yan, and Q. Zhang, J. Huang, Adv. Mater. 31, 1808392 (2019).

    Article  Google Scholar 

  116. C. Karuppiah, S. L. Beshahwured, Y.-S. Wu, L. M. Babulal, K. Z. Walle, H. K. Tran, S.-H. Wu, R. Jose, C.-C. Yang, ACS Appl. Energy Mater 4, 11248 (2021).

    CAS  Google Scholar 

  117. S. Li, J. Huang, Y. Cui, S. Liu, Z. Chen, W. Huang, C. Li, R. Liu, R. Fu, and D. Wu, Nat. Nanotechnol. 17, 613 (2022).

    Article  CAS  Google Scholar 

  118. N.-S. Choi, S.-Y. Ha, Y. Lee, J. Y. Jang, M.-H. Jeong, W. C. Shin, and M. Ue, J. Electrochem. Sci. Technol. 6, 35 (2015).

    Article  CAS  Google Scholar 

  119. J.-Y. Li, Q. Xu, G. Li, Y.-X. Yin, L.-J. Wan, and Y.‑G. Guo, Mater. Chem. Front. 1, 1691 (2017).

    Article  CAS  Google Scholar 

  120. J. Hou, S. Qu, M. Yang, and J. Zhang, J. Power Sources 450, 227697 (2020).

    Article  CAS  Google Scholar 

  121. Y. Wang, D. Dang, D. Li, J. Hu, and Y.-T. Cheng, J. Power Sources 425, 170 (2019).

    Article  CAS  Google Scholar 

  122. Y. Wang, D. Dang, D. Li, J. Hu, X. Zhan, and Y.‑T. Cheng, J. Power Sources 438, 226938 (2019).

    Article  CAS  Google Scholar 

  123. Z. Li, Y. Zhang, T. Liu, X. Gao, S. Li, M. Ling, C. Liang, J. Zheng, and Z. Lin, Adv. Energy Mater 10, 1903110 (2020).

    Article  CAS  Google Scholar 

  124. J. Xu, L. Zhang, Y. Wang, T. Chen, M. Al-Shroofy, and Y.-T. Cheng, ACS Appl. Mater. Interfaces 9, 3562 (2017).

    Article  CAS  Google Scholar 

  125. M. Haruta, H. Konaga, T. Doi, and M. Inaba, J. Electrochem. Soc. 169, 020519 (2022).

    Article  Google Scholar 

  126. L. Madec and H. Martinez, Electrochem. Comm. 90, 61 (2018).

    Article  CAS  Google Scholar 

  127. E. Y. Evshchik, E. A. Sanginov, R. R. Kayumov, V. D. Zhuravlev, O. V. Bushkova, and Y. A. Dobrovolsky, Int. J. Electrochem. Sci. 15, 2216 (2020).

    Article  CAS  Google Scholar 

  128. S. He, S. Huang, Y. Zhao, H. Qin, Y. Shan, and X. Hou, ACS Appl. Mater. Interfaces 13, 54069 (2021).

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out in accordance with the State Assignment of the Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences, no. 0089-2019-0007 (registration no. NIOKTR AAAA-A19-119061890019-5), and the Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, no. 0320-2019-0005 (registration no. NIOKTR AAAA-A19-119102990044-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Bushkova.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bushkova, O.V., Sanginov, E.A., Chernyuk, S.D. et al. Polymer Electrolytes Based on the Lithium Form of Nafion Sulfonic Cation-Exchange Membranes: Current State of Research and Prospects for Use in Electrochemical Power Sources. Membr. Membr. Technol. 4, 433–454 (2022). https://doi.org/10.1134/S2517751622070010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751622070010

Keywords:

Navigation