Skip to main content
Log in

Generalized Brinkman Volume Penalization Method for Compressible Flows Around Moving Obstacles

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

A Galilean-invariant generalization of the Brinkman volume penalization method (BVPM) for compressible flows, which extends the applicability of the method to problems of the flow around moving obstacles, is proposed. The developed method makes it possible to carry out simulations on non-body fitted meshes of arbitrary structure, including completely unstructured computational grids. The efficiency of the Galilean-invariant generalization of the BVPM for compressible flows around moving obstacles is demonstrated for a number of test problems of the direct reflection of a one-dimensional acoustic pulse from a stationary and moving plane surface, scattering of an acoustic wave by a stationary cylinder, and the subsonic flow of a viscous gas around an oscillating cylinder. The numerical results agree closely with the reference solutions and theoretical estimates of the convergence of the method and they confirm the invariance of the proposed formulation with respect to the Galilean transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. U. K. Kaul, “Three-dimensional elliptic grid generation with fully automatic boundary constraints,” J. Comput. Phys. 229 (17), 5966–5979 (2010). https://doi.org/10.1016/j.jcp.2010.04.028

    Article  MATH  Google Scholar 

  2. V. A. Garanzha, L. N. Kudryavtseva, and V. O. Tsvetkova, “Hybrid Voronoi mesh generation: Algorithms and unsolved problems,” Comput. Math. Math. Phys. 59 (12), 1945–1964 (2019). https://doi.org/10.1134/S0965542519120078

    Article  MathSciNet  MATH  Google Scholar 

  3. C. S. Peskin, “The immersed boundary method,” Acta Numer. 11, 479–517 (2002).

    Article  MathSciNet  Google Scholar 

  4. R. Mittal and G. Iaccarino, “Immersed boundary methods,” Annu. Rev. Fluid Mech. 37, 239–261 (2005). https://doi.org/10.1146/annurev.fluid.37.061903.175743

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Steijl and G. Barakos, “Sliding mesh algorithm for CFD analysis of helicopter rotor-fuselage aerodynamics,” Int. J. Numer. Methods Fluids 58 (5), 527–549 (2008). https://doi.org/10.1002/fld.1757

    Article  MATH  Google Scholar 

  6. H. Pomin and S. Wagner, “Aeroelastic analysis of helicopter rotor blades on deformable chimera grids,” J. Aircr. 41 (3), 577–584 (2004). https://doi.org/10.2514/1.11484

    Article  Google Scholar 

  7. I. V. Abalakin, V. G. Bobkov, T. K. Kozubskaya, V. A. Vershkov, B. S. Kritsky, and R. M. Mirgazov, “Numerical simulation of flow around rigid rotor in forward flight,” Fluid Dyn. 55 (4), 534–544 (2020). https://doi.org/10.1134/S0015462820040011

    Article  MathSciNet  Google Scholar 

  8. I. S. Menshov and M. A. Kornev, “Free-boundary method for the numerical solution of gas-dynamic equations in domains with varying geometry,” Math. Models Comput. Simul. 6 (6), 612–621 (2014). https://doi.org/10.1134/S207004821406009X

    Article  MathSciNet  MATH  Google Scholar 

  9. E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof, “Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations,” J. Comput. Phys. 161 (1), 35–60 (2000). https://doi.org/10.1006/jcph.2000.6484

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Arquis and J. P. Caltagirone, “Sur les conditions hydrodynamiques au voisinage d’une interface milieu fluide-milieu poreux: Application à la convection naturelle,” C. R. Acad. Sci., Ser. IIb: Mec. 299 (1), pp. 1–4 (1984).

    Google Scholar 

  11. P. Angot, C. Bruneau, and P. Fabrie, “A penalization method to take into account obstacles in viscous flows,” Numer. Math. 81 (4), 497–520 (1999). https://doi.org/10.1007/s002110050401

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Carbou and P. Fabrie, “Boundary layer for a penalization method for viscous incompressible flow,” Adv. Differ. Equations 8 (12), 1453–1480 (2003).

    MathSciNet  MATH  Google Scholar 

  13. N. K. R. Kevlahan and O. V. Vasilyev, “An adaptive wavelet collocation method for fluid-structure interaction at high Reynolds numbers,” SIAM J. Sci. Comput. 26 (6), 1894–1915 (2005). https://doi.org/10.1137/S1064827503428503

    Article  MathSciNet  MATH  Google Scholar 

  14. Q. Liu and O. V. Vasilyev, “A Brinkman penalization method for compressible flows in complex geometries,” J. Comput. Phys. 227 (2), 946–966 (2007). https://doi.org/10.1016/j.jcp.2007.07.037

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Bae and Y. J. Moon, “On the use of Brinkman penalization method for computation of acoustic scattering from complex boundaries,” Comput. Fluids 55, 48–56 (2012). https://doi.org/10.1016/j.compfluid.2011.10.015

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Komatsu, W. Iwakami, and Y. Hattori, “Direct numerical simulation of aeroacoustic sound by volume penalization method,” Comput. Fluids 130, 24–36 (2016). https://doi.org/10.1016/j.compfluid.2016.02.016

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Bakhvalov, I. Abalakin, and T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes,” Int. J. Numer. Methods Fluids 81 (6), 331–356 (2016). https://doi.org/10.1002/fld.4187

    Article  MathSciNet  Google Scholar 

  18. O. Boiron, G. Chiavassa, and R. Donat, “A high-resolution penalization method for large Mach number flows in the presence of obstacles,” Comput. Fluids 38 (3), 703–714 (2009). https://doi.org/10.1016/j.compfluid.2008.07.003

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Gorobets, “Parallel algorithm of the NOISEtte code for CFD and CAA simulations,” Lobachevskii J. Math. 39 (4), 524–532 (2018). https://doi.org/10.1134/S1995080218040078

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Gorobets and P. Bakhvalov, “Heterogeneous CPU+GPU parallelization for high-accuracy scale-resolving simulations of compressible turbulent flows on hybrid supercomputers,” Comput. Phys. Commun. 271, 108231 (2022). https://doi.org/10.1016/j.cpc.2021.108231

  21. Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, C. K. W. Tam and J. C. Hardin, Eds., NASA Conf. Publ. 3352 (NASA Langley Research Center, Hampton, VA, 1997).

  22. I. Abalakin, N. Zhdanova, and T. Kozubskaya, “Immersed boundary penalty method for compressible flows over moving obstacles,” in Proc. 6th European Conf. on Computational Mechanics: Solids, Structures and Coupled Problems (ECCM 2018) and 7th European Conf. on Computational Fluid Dynamics (ECFD 2018), 11–15 June 2018, Glasgow, UK, pp. 3449–3458.

Download references

ACKNOWLEDGMENTS

The results were obtained using the equipment of the Center for Shared Use, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences (http://ckp.kiam.ru).

Funding

This work was supported by the Russian Science Foundation, project 20-41-09018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. S. Zhdanova or O. V. Vasilyev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdanova, N.S., Abalakin, I.V. & Vasilyev, O.V. Generalized Brinkman Volume Penalization Method for Compressible Flows Around Moving Obstacles. Math Models Comput Simul 14, 716–726 (2022). https://doi.org/10.1134/S2070048222050180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048222050180

Keywords:

Navigation