Skip to main content
Log in

An Investigation of the Regulatory Relationship of the Keap1/Nrf2/ARE Signaling System and Transcriptional Regulators of Lysosomal Biogenesis

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Despite the key role of the Keap1/Nrf2/ARE redox-sensitive signaling system in cell metabolism, almost nothing is known about its association with lysosome biogenesis. In the present work, a theoretical and experimental analysis of the possibility of such a relationship is carried out. By forming a position frequency matrix in the genes of the transcription factors TFEB and TFE3, the presence of a large number of ARE-like sequences in noncoding regions was found. The impact in vitro on J774 cells with activators of the Keap1/Nrf2/ARE system (original synthetic monophenol TS-13 and reference drug tert-butylhydroquinone) leads to dose-dependent induction of Tfe3 and Tfeb genes accompanied by a gradual increase in the number of lysosomes and the intensity of the autophagosome–lysosome fusion. Thus, it can be assumed that proteins controlling ARE-dependent genes can influence lysosomal biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Baixauli, F., Acin-Perez, R., Villarroya-Beltri, C., Mazzeo, C., Nunez-Andrade, N., Gabande-Rodri-guez, E., Ledesma, M.D., Blazquez, A., Martin, M.A., Falcon-Perez, J.M., Redondo, J.M., Enriquez, J.A., and Mittelbrunn, M., Mitochondrial respiration controls lysosomal function during inflammatory T cell responses, Cell Metab., 2015, vol. 22, p. 485. https://doi.org/10.1016/j.cmet.2015.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Egbujor, M.C., Petrosino, M., Zuhra, K., and Saso, L., The role of organosulfur compounds as Nrf2 activators and their antioxidant effects, Antioxidants (Basel), 2022, vol. 11, p. 1255. https://doi.org/10.3390/antiox11071255

  3. Klionsky, D.J., Abdel-Aziz, A.K., Abdelfatah, S., Abdellatif, M., Abdoli, A., Abel, S., Abeliovich, H., Abild-gaard, M.H., Abudu, Y.P., Acevedo-Arozena, A., Adamopoulos, I.E., Adeli, K., Adolph, T.E., Adornetto, A., Aflaki, E., et al., Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy (4th ed.), Autophagy, 2021, vol. 17, p. 1. https://doi.org/10.1080/15548627.2020.1797280

  4. Li, S., Li, J., Shen, C., Zhang, X., Sun, S., Cho, M., Sun, C., and Song, Z., tert-Butylhydroquinone (tBHQ) protects hepatocytes against lipotoxicity via inducing autophagy independently of Nrf2 activation, Biochim. Biophys. Acta, 2014, vol. 1841, p. 22. https://doi.org/10.1016/j.bbalip.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  5. Mahapatra, K.K., Mishra, S.R., Behera, B.P., Patil, S., Gewirtz, D.A., and Bhutia, S.K., The lysosome as an imperative regulator of autophagy and cell death, Cell. Mol. Life Sci., 2021, vol. 78, p. 7435. https://doi.org/10.1007/s00018-021-03988-3

    Article  CAS  PubMed  Google Scholar 

  6. Maniganda, S., Sankar, V., Nair, J.B., Raghu, K.G., and Maiti, K.K., A lysosome-targeted drug delivery system based on sorbitol backbone towards efficient cancer therapy, Org. Biomol. Chem., 2014, vol. 12, pp. 6564–6569. https://doi.org/10.1039/c4ob01153h

    Article  CAS  PubMed  Google Scholar 

  7. Martinovich, G.G., Martinovich, I.V., Zenkov, N.K., Menshchikova, E.B., Kandalintseva, N.V., and Cherenkevich, S.N., Phenolic antioxidant TS-13 regulating ARE-driven genes induces tumor cell death by a mitochondria-dependent pathway, Biophysics (Moscow), 2015, vol. 60, p. 94. https://doi.org/10.1134/S0006350915010194

    Article  CAS  Google Scholar 

  8. Maurya, S.S., Role of enhancers in development and diseases, Epigenomes, 2021, vol. 5, p. 21. https://doi.org/10.3390/epigenomes5040021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Menshchikova, E.B., Zenkov, N.K., Kozhin, P.M., Chechushkov, A.V., Pavlov, V.S., Romakh, L.P., Khrapova, M.V., Serykh, A.E., Gritsyk, O.B., and Kandalintseva, N.V., Effect of new water-soluble phenolic antioxidants on the activity of Nrf2-driven enzymes, glutathione system, and Nrf2 translocation into the nucleus, Sib. Nauchn. Med. Zh., 2020, vol. 40. No. 6, p. 58. https://doi.org/10.15372/SSMJ20200606

    Article  Google Scholar 

  10. Ngo, V. and Duennwald, M.L., Nrf2 and oxidative stress: a general overview of mechanisms and implications in human disease, Antioxidants (Basel), 2022, vol. 11, p. 2345. https://doi.org/10.3390/antiox11122345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oleynik, A.S., Kuprina, T.S., Pevneva, N.Yu., Markov, A.F., Kandalintseva, N.V., Prosenko, A.E., and Grigorev, I.A., Synthesis and antioxidant properties of sodium S-[3-(hydroxyaryl)propyl] thiosulfates and [3-(hydroxyaryl)propane]-1-sulfonates, Russ. Chem. Bull., 2007, vol. 56, p. 1135.

    Article  CAS  Google Scholar 

  12. Pearson, R.G., Reasons to conserve Nature, Trends Ecol. Evol., 2016, vol. 31, p. 366. https://doi.org/10.1016/j.tree.2016.02.005

    Article  PubMed  Google Scholar 

  13. Qiu, S., Liang, Z., Wu, Q., Wang, M., Yang, M., Chen, C., Zheng, H., Zhu, Z., Li, L., andYang, G., Hepatic lipid accumulation induced by a high-fat diet is regulated by Nrf2 through multiple pathways, FASEB J., 2022, vol. 36, p. e22280. https://doi.org/10.1096/fj.202101456R

    Article  CAS  PubMed  Google Scholar 

  14. Redza-Dutordoir, M. and Averill-Bates, D.A., Interactions between reactive oxygen species and autophagy. Special issue: Death mechanisms in cellular homeostasis, Biochim. Biophys. Acta Mol. Cell. Res., 2021, vol. 1868, p. 119041. https://doi.org/10.1016/j.bbamcr.2021.119041

    Article  CAS  PubMed  Google Scholar 

  15. Roopra, A., MAGIC: a tool for predicting transcription factors and cofactors driving gene sets using ENCODE data, PLoS Comput. Biol., 2020, vol. 16, p.1007800. https://doi.org/10.1371/journal.pcbi.1007800

    Article  CAS  Google Scholar 

  16. Santana-Garcia, W., Castro-Mondragon, J.A., Padilla-Galvez, M., Nguyen, N.T.T., Elizondo-Salas, A., Ksouri, N., Gerbes, F., Thieffry, D., Vincens, P., Contreras-Moreira, B., Van Helden, J., Thomas-Chollier, M., and Medina-Rivera, A., RSAT 2022: regulatory sequence analysis tools, Nucleic Acids Res., 2022, vol. 50. https://doi.org/10.1093/nar/gkac312

  17. Sardiello, M., Palmieri, M., Di Ronza, A., Medina, D.L., Valenza, M., Gennarino, V.A., Di Malta, C., Donaudy, F., Embrione, V., Polishchuk, R.S., Banfi, S., Parenti, G., Cattaneo, E., and Ballabio, A., A gene network regulating lysosomal biogenesis and function, Science, 2009, vol. 325, p. 473. https://doi.org/10.1126/science.1174447

    Article  CAS  PubMed  Google Scholar 

  18. Sharifi-Zarchi, A., Gerovska, D., Adachi, K., Toton-chi, M., Pezeshk, H., Taft, R.J., Scholer, H.R., Chitsaz, H., Sadeghi, M., Baharvand, H., and Arauzo-Bravo, M.J., DNA methylation regulates discrimination of enhancers from promoters through a H3K4me1-H3K4me3 seesaw mechanism, BMC Genomics, 2017, vol. 18, p. 964. https://doi.org/10.1186/s12864-017-4353-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Simov, V., Altman, M.D., Bianchi, E., Delrizzo, S., Dinunzio, E.N., Feng, G., Goldenblatt, P., Ingenito, R., Johnson, S.A., Mansueto, M.S., Mayhood, T., Morti-son, J.D., Serebrov, V., Sondey, C., Sriraman, V., et al., Discovery and characterization of novel peptide inhibitors of the NRF2/MAFG/DNA ternary complex for the treatment of cancer, Eur. J. Med. Chem., 2021, vol. 224, p. 113686. https://doi.org/10.1016/j.ejmech.2021.113686

    Article  CAS  PubMed  Google Scholar 

  20. Wang, X., Tomso, D.J., Chorley, B.N., Cho, H.Y., Cheung, V.G., Kleeberger, S.R., and Bell, D.A., Identification of polymorphic antioxidant response elements in the human genome, Hum. Mol. Genet., 2007, vol. 16, p. 1188. https://doi.org/10.1093/hmg/ddm066

    Article  CAS  PubMed  Google Scholar 

  21. Zenkov, N.K., Kozhin, P.M., Chechushkov, A.V., Martinovich, G.G., Kandalintseva, N.V., and Menshchikova, E.B., Mazes of Nrf2 regulation, Biochemistry (Moscow), 2017, vol. 82, p. 556. https://doi.org/10.1134/s0006297917050030

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, W., Feng, C., and Jiang, H., Novel target for treating Alzheimer’s diseases: crosstalk between the Nrf2 pathway and autophagy, Ageing Res. Rev., 2021, vol. 65, p. 101207. https://doi.org/10.1016/j.arr.2020.101207

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, L., He, S., Huang, L., Ren, D., Nie, T., Tao, K., Xia, L., Lu, F., Mao, Z., and Yang, Q., Chaperone-mediated autophagy degrades Keap1 and promotes Nrf2-mediated antioxidative response, Aging Cell, 2022, vol. 21, p. e13616. https://doi.org/10.1111/acel.13616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of the Centers for Collective Use “Modern Optical Systems” and “Proteomic Analysis” and supported by funding from the Russian Ministry of Education and Science, agreement no. 075-15-2021-691.

Funding

This work was performed within the framework of a state order of the Federal Research Center for Fundamental and Translational Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Menshchikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

The authors did not conduct experiments involving animals or human beings.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: ROM—reactive oxygen metabolite; TS-13—sodium 3-(3'-tert-butyl-4'-hydroxyphenyl)propylthiosulfonate; ABC—ATP-binding cassette transporter; ARE—antioxidant response element; CLEAR—coordinated lysosomal expression and regulation; LC3B—microtubule-associated proteins 1A/1B light chain 3β; Nrf2—NF-E2-related factor 2; Keap1—Kelch-like ECH-associated protein 1; MDR—multidrug-resistance proteins; MITF—microphthalmia associated transcription fac-tor; p62/SQSTM—ubiquitin-binding protein p62(sequestosome 1); tBHQ—tert-butyl hydroquinone; PBS—phosphate buffered saline; TFE3—transcription factor binding to immunoglobulin heavy constant μ enhancer 3; TFEB—transcription factor EB; TFEC—transcription factor EC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chechushkov, A.V., Menshchikova, E.B. An Investigation of the Regulatory Relationship of the Keap1/Nrf2/ARE Signaling System and Transcriptional Regulators of Lysosomal Biogenesis. Cell Tiss. Biol. 17, 653–661 (2023). https://doi.org/10.1134/S1990519X23060056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23060056

Keywords:

Navigation