Skip to main content
Log in

Modeling of a Single Bubble Dynamics at Boiling by Lattice Boltzmann Method

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Абстракт: To study the process of boiling on a solid heater surface, a hybrid model based on lattice Boltzmann method and heat transfer equation is presented. The process of formation and rise of a single bubble during boiling over a single lyophobic zone located on a smooth lyophilic surface was studied. Dependences of the bubble departure frequency and bubble departure diameter on the width of the lyophobic zone and the wall superheat were obtained. It is shown that the bubble departure diameter increases with the width of the lyophobic zone, and the frequency of bubble departure increases with the wall superheat. Based on the obtained data, the optimal size of the lyophobic zone on the lyophilic surface was determined from the point of view of heat transfer enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. G. Liang and I. Mudawar, “Review of pool boiling enhancement by surface modification,” Int. J. Heat Mass Transfer 128, 892–933 (2019).

    Article  Google Scholar 

  2. Y. Nam, J. Wu, G. Warrier, and Y. Sungtaek, “Experimental and numerical study of single bubble dynamics on a hydrophobic surface,” J. Heat Transfer 131 (12), 121004 (2009).

    Article  Google Scholar 

  3. H. T. Phan, N. Caney, P. Marty, S. Colasson, and J. Gavillet, “Surface wettability controlled by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism,” Int. J. Heat Mass Transfer 52 , 5459–5471 (2009).

    Article  Google Scholar 

  4. Y. Li, K. Zhanga, M. C. Lu, and C. Duan, “Single bubble dynamics on superheated superhydrophobic surfaces,” Int. J. Heat Mass Transfer 99, 521–531 (2016).

    Article  Google Scholar 

  5. E. Teodori, T. Valente, I. Malavasi, A. S. Moita, M. Marengo, and A. L. N. Moreira, “Effect of extreme wetting scenarios on pool boiling conditions,” Appl. Thermal Eng. 115, 1424–1437 (2017).

    Article  Google Scholar 

  6. B. Bourdon, R. Rioboo, M. Marengo, E. Gosselin, and J. De Coninck, “Influence of the wettability on the boiling onset,” Langmuir 28 (2), 1618–1624 (2012).

    Article  Google Scholar 

  7. A. R. Betz, J. Jenkins, C. J. Kim, and D. Attinger, “Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces,” Int. J. Heat Mass Transfer 57 (2), 733–741 (2013).

    Article  Google Scholar 

  8. S. H. Kim, G. C. Lee, J. Y. Kang, K. Moriyama, H. S. Park, and M. H. Kim, “The role of surface energy in heterogeneous bubble growth on ideal surface,” Int. J. Heat Mass Transfer 108, 1901–1909 (2017).

    Article  Google Scholar 

  9. A. L. Kupershtokh, D. A. Medvedev, and D. I. Karpov, “On equations of state in a lattice Boltzmann method,” Comput. Math. Appl. 58 (5), 965–974 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Gong and P. Cheng, “Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows,” Comput. Fluids 53, 93–104 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. Q. Li, Q. J. Kang, M. M. Francois, Y. L. He, and K. H. Luo, “Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability,” Int. J. Heat Mass Transfer 85, 787–796 (2015).

    Article  Google Scholar 

  12. S. Gong and P. Cheng, “Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling,” Int. J. Heat Mass Transfer 64, 122–132 (2013).

    Article  Google Scholar 

  13. A. V. Fedoseev, A. S. Surtaev, M. I. Moiseev, and A. E. Ostapchenko, “Lattice Boltzmann simulation of bubble evolution at boiling on surfaces with different wettability,” J. Phys. Conf. Ser. 1677, 012085 (2020).

    Article  Google Scholar 

  14. Q. Li, Y. Yu, P. Zhou, and H. J. Yan, “Enhancement of boiling heat transfer using hydrophilic-hydrophobic mixed surfaces: A lattice Boltzmann study,” Appl. Thermal Eng. 132, 490–499 (2018).

    Article  Google Scholar 

  15. D. A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer-Verlag, New York, 2005).

    MATH  Google Scholar 

  16. X. He and L. S. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation,” Phys. Rev. E 56 (6), 6811 (1997).

    Article  Google Scholar 

  17. X. Shan, X. F. Yuan, and H. Chen, “Kinetic theory representation of hydrodynamics: A way beyond the Navier–Stokes equation,” J. Fluid Mech. 550, 413 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. H. Qian, D. d’Humieres, and P. Lallemand, “Lattice BGK Models for Navier–Stokes equation,” Europhys. Lett. 17 (6), 479 (1992).

    Article  MATH  Google Scholar 

  19. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford Univ. Press, Oxford, 2001).

    MATH  Google Scholar 

  20. P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,” Phys. Rev. 94, 511–525 (1954).

    Article  MATH  Google Scholar 

  21. H. Chen, S. Chen, and W. H. Matthaeus, “Recovery of the Navier–Stokes equation using a lattice-gas Boltzmann method,” Phys. Rev. A 45, R5339–R5342 (1992).

    Article  Google Scholar 

  22. A. L. Kupershtokh, “Simulation of flows with liquid–vapor interfaces by the lattice Boltzmann method,” Vestn. NGU. Ser. Mat. Mekh. Inf. 5 (3), 29–42 (2005) [in Russian].

    MATH  Google Scholar 

  23. A. L. Kupershtokh, “Simulation of two-phase liquid–vapor flows using lattice Boltzmann equations,” Sb. tr. Vseross. konf. “28 Sib. teplofiz. semin.” (Novosibirsk, 2005), 1–22.

  24. A. L. Kupershtokh, C. Stamatelatos, and D. P. Agoris, “Stochastic model of partial discharge activity in liquid and solid dielectrics,” Proc. 15 IEEE Int. Conf. Dielectric Liquids (Coimbra, 2005), 135–138.

  25. A. L. Kupershtokh, D. I. Karpov, D. A. Medvedev, C. P. Stamatelatos, V. P. Charalambakos, E. C. Pyrgioti, and D. P. Agoris, “Stochastic models of partial discharge activity in solid and liquid dielectrics,” IET Sci. Meas. Technol. 1 (6), 303–311 (2007).

  26. A. L. Kupershtokh, D. I. Karpov, D. A. Medvedev, C. P. Stamatelatos, V. P. Charalambakos, E. C. Pyrgioti, and D. P. Agoris, “Stochastic models of partial discharge activity in solid and liquid dielectrics,” IET Sci. Meas. Technol. 1 (6), 303–311 (2007).

    Article  Google Scholar 

  27. P. Yuan and L. Schaefer, “Equations of state in a lattice Boltzmann model,” Phys. Fluids. 18, 042101 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Y. Peng and D. B. A. Robinson, “New two-constant equation of state,” Ind. Eng. Chem. Fundam. 15, 59–64 (1976).

    Article  Google Scholar 

  29. S. Blundell and K. M. Blundell, Concepts in Thermal Physics (Oxford Univ. Press, Oxford, 2006).

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-29-01251.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Fedoseev, M. V. Salnikov or A. E. Ostapchenko.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseev, A.V., Salnikov, M.V. & Ostapchenko, A.E. Modeling of a Single Bubble Dynamics at Boiling by Lattice Boltzmann Method. J. Appl. Ind. Math. 17, 64–71 (2023). https://doi.org/10.1134/S1990478923010088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478923010088

Keywords

Navigation