Skip to main content
Log in

Elasticity of Highly Entangled Polymer Networks and Gels: Review of Models and Theory of Nonaffine Deformations

  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

The main models of phantom and topologically entangled polymer networks are surveyed. A theory of anisotropic and nonaffine deformation of both swollen and deswollen (with partial solvent removal) strongly entangled polymer networks in athermal and θ-solvents has been developed. It is shown that under weak anisotropic deformations of the deswollen network, the entanglement tube consists of fractal loopy globules. In a θ-solvent, slight deformations of the network lead to a decrease in the overlap of loopy globules without changing their sizes. Deformations of swollen networks, as well as strong deformations of deswollen networks, are described in terms of the slip-tube model. An effective Hamiltonian has been derived that determines the entropy of fractal loopy globules. Based on the Hamiltonian, it is shown that topological constraints can be described using the polymer–quantum diffusion analogy. The connection between topological and quantum entanglements is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. Panyukov, Polymer Sci.: Peer Rev. J. 1, 000505 (2020).

  2. I. Ya. Erukhimovich, Candidates’ Dissertation in Physics and Mathematics (Inst. Low Temp. Phys. Eng., Moscow, 1979).

  3. V. Yu. Borue and I. Y. Erukhimovich, Macromolecules 21, 3240 (1988).

    Google Scholar 

  4. V. Yu. Borue and I. Y. Erukhimovich, Macromolecules 23, 3625 (1990).

    CAS  Google Scholar 

  5. S. A. Brazovskii, Sov. Phys. JETP 41, 85 (1975).

    Google Scholar 

  6. L. Leibler, Macromolecules 13, 1602 (1980).

    CAS  Google Scholar 

  7. A. V. Dobrynin and I. Ya. Erukhimovich, J. Phys. II 1, 1387 (1991).

    CAS  Google Scholar 

  8. H. Angerman and G. ten Brinke, and I. Erukhimovich, Macromolecules 29, 3255 (1996).

    CAS  Google Scholar 

  9. I. Ya. Erukhimovich, Sov. Phys. JETP 108, 1004 (1995).

    CAS  Google Scholar 

  10. I. Ya. Erukhimovich, M. V. Thamm, and A. V. Ermoshkin, Macromolecules 34, 5653 (2001).

    CAS  Google Scholar 

  11. S. V. Panyukov, Sov. Phys. JETP 61, 1065 (1985).

    Google Scholar 

  12. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaka, 1979; Mir, Moscow, 1982).

  13. H. M. James and E. Guth, J. Chem. Phys. 11, 455 (1943).

    CAS  Google Scholar 

  14. P. J. Flory and J. Rehner, J. Chem. Phys. 11, 521 (1943).

    CAS  Google Scholar 

  15. F. T. Wall, J. Chem. Phys. 11, 527 (1943).

    CAS  Google Scholar 

  16. L. Treloar, Trans. Faraday Soc. 39, 36 (1943).

    CAS  Google Scholar 

  17. L. R. G. Treloar, The Physics of Rubber Elasticity (Oxford Univ. Press, New York, 1975; Izd. Inostr. Lit., Moscow, 1953).

  18. M. Rubinstein and R. Colby, Polymer Physics (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  19. S. Panyukov, Macromolecules 52, 4145 (2019).

    CAS  Google Scholar 

  20. R. Wang, A. Alexander-Katz, J. A. Johnson, and B. D. Olsen, Phys. Rev. Lett. 116, 188302 (2016).

  21. A. A. Gusev, Macromolecules 52, 3244 (2019).

    CAS  Google Scholar 

  22. M. Lang, ACS Macro Lett 7, 536 (2018).

    CAS  PubMed  Google Scholar 

  23. M. Lang, Macromolecules 52, 6266 (2019).

    CAS  Google Scholar 

  24. G. J. Lake and A. G. Thomas, Proc. R. Soc. A 300, 108 (1967).

    CAS  Google Scholar 

  25. S. Wang, S. Panyukov, S. L. Craig, and M. Rubinstein, Macromolecules 56, 2309 (2023).

    CAS  Google Scholar 

  26. S. F. Edwards, Proc. Phys. Soc. 91, 513 (1967).

    CAS  Google Scholar 

  27. S. K. Nechaev, Statistics of Knots and Entangled Random Walks (World Scientific, River Edge, NJ, 1996).

    Google Scholar 

  28. A. E. Likhtman and M. Ponmurugan, Macromolecules 47, 1470 (2014).

    CAS  Google Scholar 

  29. M. D. Frank-Kamenetskii and A. V. Vologodskii, Sov. Phys. Usp. 24, 679–696 (1981).

    Google Scholar 

  30. E. Panagiotou, M. Kröger, and K. C. Millett, Phys. Rev. E 88, 062604 (2013).

  31. M. J. Mooney, Appl. Phys. 11, 582 (1940).

    Google Scholar 

  32. R. S. Rivlin, Philos. Trans. R. Soc., A 241, 379 (1948).

  33. S. Priss, Preprint (Research Center for Biological Studies, USSR Acad. Sci., Pushchino, 1981).

  34. S. Schlögl, M.-L. Trutschel, W. Chasse, G. Riess, and K. Saalwächter, Macromolecules 47, 2759 (2014).

    Google Scholar 

  35. M. Kapnisto, M. Lang, D. Vlassopoulos, W. Pyckhout-Hintzen, D. Richter, D. Cho, T. Chang, and M. Rubinstein, Nat. Mater. 7, 997 (2008).

    Google Scholar 

  36. Y. Doi, K. Matsubara, Y. Ohta, T. Nakano, D. Kawaguchi, Y. Takahashi, A. Takano, and Y. Matsushita, Macromolecules 48, 3140 (2015).

    CAS  Google Scholar 

  37. R. C. Ball, M. Doi, S. F. Edwards, and M. Warner, Polymer 22, 1010 (1981).

    CAS  Google Scholar 

  38. S. F. Edwards and Th. Vilgis, Polymer 27, 483 (1986).

    CAS  Google Scholar 

  39. Y. Okumura and K. Ito, Adv. Mater. 13, 485 (2001).

    CAS  Google Scholar 

  40. L. Jiang, C. Liu, K. Mayumi, K. Kato, H. Yokoyama, and K. Ito, Chem. Mater., No. 30, 5013 (2018).

  41. D. Danyang Chen, S. Panyukov, L. Sapir, and M. Rubinstein, ACS Macro Lett 12, 362 (2023).

    PubMed  Google Scholar 

  42. E. Helfand and D. S. Pearson, J. Chem. Phys 79, 2054 (1983).

    CAS  Google Scholar 

  43. M. Rubinstein, Phys. Rev. Lett. 59, 1946 (1987).

    CAS  PubMed  Google Scholar 

  44. S. K. Nechaev, A. N. Semenov, and M. K. Koleva, Phys. A (Amsterdam, Neth.) 140, 506 (1987).

  45. A. R. Khokhlov and S. K. Nechaev, Phys. Lett. A 112, 156 (1985).

    Google Scholar 

  46. M. Rubinstein and E. Helfand, J. Chem. Phys. 82, 2477 (1985).

    CAS  Google Scholar 

  47. F. F. Ternovskii and A. R. Khoklov, Sov. Phys. JETP 63, 728 (1986).

    Google Scholar 

  48. E. A. Zheligovskaya, F. F. Ternovsky, and A. R. Kho-khlov, Theor. Math. Phys. 75, 451 (1986).

    Google Scholar 

  49. T. C. B. McLeish, Adv. Phys. 51, 1379 (2002).

    CAS  Google Scholar 

  50. A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989; AIP Press, New York, 1994).

  51. M. Doi and S. F. Edwards, Theory of Polymer Dynamics (Acad. Press, New York, 1986; Mir, Moscow, 1998).

  52. R. G. Larson, T. Sridhar, L. G. Leal, G. H. McKinley, A. E. Likhtman, and T. C. B. McLeish, J. Rheol. 47, 809 (2003).

    CAS  Google Scholar 

  53. S. F. Edwards, Proc. Phys. Soc. 92, 9 (1967).

    CAS  Google Scholar 

  54. R. C. Ball, M. Doi, S. F. Edwards, and M. Warner, Polymers 22, 1010 (1981).

    CAS  Google Scholar 

  55. S. F. Edwards and Th. Vilgis, Polymers 27, 483 (1986).

    CAS  Google Scholar 

  56. S. F. Edwards and T. A. Vilgis, Rep. Prog. Phys. 51, 243 (1988).

    Google Scholar 

  57. L. S. Priss, Pure Appl. Chem. 53, 1581 (1981).

    CAS  Google Scholar 

  58. G. Marrucci, Macromolecules 14, 434 (1981).

    CAS  Google Scholar 

  59. W. W. Graessey, Adv. Polym. Sci. 47, 67 (1982).

    Google Scholar 

  60. A. Baumgartner and K. Binder, J. Chem. Phys. 75, 2994 (1981).

    Google Scholar 

  61. K. Kremer, Macromolecules 16, 1632 (1983).

    CAS  Google Scholar 

  62. D. Richter, A. Baumgärtner, K. Binder, B. Ewen, and J. B. Hayter, Phys. Rev. Lett. 47, 109 (1981).

    CAS  Google Scholar 

  63. S. V. Panyukov, Sov. Phys. JETP 67, 2274 (1988).

    Google Scholar 

  64. S. V. Panyukov, Sov. Phys. JETP 69, 342 (1989).

    Google Scholar 

  65. A. E. Likhtman, Soft Matter 10, 1895 (2014).

    CAS  PubMed  Google Scholar 

  66. M. Rubinstein and S. Panyukov, Macromolecules 30, 8036 (1997).

    CAS  Google Scholar 

  67. Z. Chen, C. Cohen, and F. A. Escobedo, Macromolecules 35, 3296 (2002).

    CAS  Google Scholar 

  68. M. Rubinstein and S. Panyukov, Macromolecules 35, 6670 (2002).

    CAS  Google Scholar 

  69. G. S. Grest, M. Putz, R. Everaers, and K. Kremer, J. Non-Cryst. Solids 274, 139 (2000).

    CAS  Google Scholar 

  70. A. E. Likhtman, Macromolecules 38, 6128 (2005).

    CAS  Google Scholar 

  71. K. Polovnikov, S. Nechaev, and M. V. Tamm, Soft Matter 14, 6561 (2018).

    CAS  PubMed  Google Scholar 

  72. M. G. Brereton and S. Shah, J. Phys. A: Math. Gen. 13, 2751 (1980).

    CAS  Google Scholar 

  73. S. P. Obukhov, M. Rubinstein, and R. H. Colby, Macromolecules 27, 3191 (1994).

    CAS  Google Scholar 

  74. M. Rubinstein, Phys. Rev. Lett. 57, 3023 (1986).

    CAS  PubMed  Google Scholar 

  75. S. P. Obukhov, M. Rubinstein, and T. Duke, Phys. Rev. Lett. 73, 1263 (1994).

    CAS  PubMed  Google Scholar 

  76. S. Obukhov, A. Johner, J. Baschnagel, H. Meyer, and J. P. Wittmer, Eur. Phys. Lett. 105, 48005 (2014).

    Google Scholar 

  77. A. Yu. Grosberg and S. K. Nechaev, Macromolecules 24, 2789 (1991).

    CAS  Google Scholar 

  78. P. G. de Gennes, J. Phys. Lett. 46, 639 (1985).

    Google Scholar 

  79. S. V. Panyukov, JETP Lett. 56, 61 (1992).

    Google Scholar 

  80. A. Rosa and R. Everaers, Phys. Rev. Lett. 112, 118302 (2014).

  81. T. Ge, S. Panyukov, and M. Rubinstein, Macromolecules 49, 708 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. S. Obukhov, A. Johner, J. Baschnagel, H. Meyer, and J. P. Wittmer, Europhys. Lett. 105, 48005 (2014).

    Google Scholar 

  83. M. V. Tamm, L. I. Nazarov, A. A. Gavrilov, and A. V. Chertovich, Phys. Rev. Lett. 114, 178102 (2015).

  84. I. M. Lifshitz, A. Yu. Grosberg, and A. R. Khokhlov, Rev. Mod. Phys. 50, 683 (1978).

    CAS  Google Scholar 

  85. A. J. Leggett, Phys. Rev. 30, 1208 (1984).

    Google Scholar 

  86. A. J. Bray and M. A. Moore, Phys. Rev. Lett. 49, 1545 (1982).

    Google Scholar 

  87. L.-H. Cai, S. Panyukov, and M. Rubinstein, Macromolecules 48, 847 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. T. Yamamoto, J. A. Campbell, S. Panyukov, and M. Rubinstein, Macromolecules 55, 3588 (2022).

    CAS  Google Scholar 

  89. S. V. Panyukov, Sov. Phys. JETP 71, 372 (1990).

    Google Scholar 

  90. S. Panyukov, Polymers 12, 767 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. T. A. Kavassalis and J. Noolandi, Phys. Rev. Lett. 59, 2674 (1987).

    CAS  PubMed  Google Scholar 

  92. T. A. Kavassalis and J. Noolandi, Macromolecules 21, 2869 (1988).

    CAS  Google Scholar 

  93. A. Johner and M. Daoud, J. Phys. 50, 2147 (1989).

    CAS  Google Scholar 

  94. K. Urayama and S. Kohjiya, Polymer 38, 955 (1997).

    CAS  Google Scholar 

  95. J. Biamonte, M. Faccin, and M. De Domenico, Commun. Phys. 2, 53 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Panyukov.

Ethics declarations

The author declares no conflict of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panyukov, S.V. Elasticity of Highly Entangled Polymer Networks and Gels: Review of Models and Theory of Nonaffine Deformations. Polym. Sci. Ser. C 65, 27–45 (2023). https://doi.org/10.1134/S1811238223700236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238223700236

Navigation