Skip to main content
Log in

Polyvinylidene Fluoride Copolymers with Grafted Polyethyl Methacrylate Chains: Synthesis and Thermal and Dielectric Properties

  • REVIEWS
  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

Polyvinylidene fluoride copolymers with grafted polyethyl methacrylate chains have been synthesized for the first time via photoinduced reversible deactivation radical polymerization. Binary and ternary copolymers of vinylidene fluoride with chlorotrifluoroethylene and trifluoroethylene were used as initial polymer chains for modification. The effect of the content of grafted chains on the thermal and dielectric properties of the copolymers has been studied. It has been shown that an increase in the content of grafted chains leads to a decrease in the degradation temperature, dielectric permittivity, and dielectric losses of the copolymers, but it significantly improves their film-forming properties due to a decrease in the degree of crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Q. Li and Q. Wang, Macromol. Chem. Phys. 217, 1228 (2016).

    Article  CAS  Google Scholar 

  2. X. Chen, X. Han, and Q.-D. Shen, Adv. Electron. Mater. 3 (5), 1600460 (2017).

  3. R. F. Fan, W. Tang, and Z. L. Wang, Adv. Mater. 28, 4283 (2016).

    Article  CAS  Google Scholar 

  4. Prateek, V. K. Thakur, and R. K. Gupta, Chem. Rev. 116, 4260 (2016).

    Article  CAS  Google Scholar 

  5. Z. Liu, S. Zhang, Y. M. Jin, H. Ouyang, Y. Zou, X. X. Wang, L. X. Xie, Z. Li, Sci. Technol. 32, 064004 (2017).

  6. X. Wang, Nano Energy 1, 13 (2012).

    Article  CAS  Google Scholar 

  7. Z. Pi, J. Zhang, Ch. Wen, Z. Zhang, D. Wu, Nano Energy 7, 33 (2014).

    Article  CAS  Google Scholar 

  8. X. Han, X. Chen, X. Tang, Y. L. Liu. Chen, Q. D. Shen, Adv. Funct. Mater. 26, 3640 (2016).

    Article  CAS  Google Scholar 

  9. Ch. Wan and Ch. R. Bowen, J. Mater. Chem. A 5, 3091 (2017).

    Article  CAS  Google Scholar 

  10. Y. Liu and Q. Wang, Adv. Sci. 7, 1902468 (2020).

  11. H. M. G. Correia and M. M. D. Ramos, Comput. Mater. Sci. 33 (1), 224 (2005).

    Article  CAS  Google Scholar 

  12. M. Li, H. J. Wondergem, M. J. Spijkman, K. Asadi, I. Katsouras, P. W. M. Blom, D. M. Leeuw, Nat. Mater. 12 (5), 433 (2013).

    Article  CAS  Google Scholar 

  13. Sh. Wang and Q. Li, IET Nanodielectr. 1 (2), 80 (2018).

  14. S. Tan, J. Xiong, Y. Zhao, J. Liu, Z. Zhang, J. Mater. Chem. C 6 (15), 4131 (2018).

    Article  CAS  Google Scholar 

  15. X. Hu, G. Cui, N. Zhu, J. Zhai, K. Guo, Polym. Chem. 10 (68), 10 (2018).

    Google Scholar 

  16. F. Guan, J. Wang, L. Yang, J. K. Tseng, K. Han, Q. Wang, L. Zhu, Macromolecules 44 (7), 2190 (2011).

    Article  CAS  Google Scholar 

  17. H. Gong, B. Miao, X. Zhang, and Zh. Lu, RSC Adv. 6 (2), 1589 (2016).

    Article  CAS  Google Scholar 

  18. J. Li, S. Tan, S. Ding, H. Li, L. Yang, J. Mater. Chem. 22 (44), 23468 (2012).

    Article  CAS  Google Scholar 

  19. P. Hu, S. Gao, Y. Zhang, L. Zhang, C. Wang, Compos. Sci. Technol. 156, 109 (2018).

    Article  CAS  Google Scholar 

  20. J. Wanga, Y. Xiea, J. Liua, Z. Zhanga, Y. Zhang, Appl. Surf. Sci. 469, 437 (2019).

    Article  Google Scholar 

  21. U. Valiyaneerilakkal, A. Singh, C. K. Subash, K. Singh, S. M. Abbas, S. Varghese, Polym. Compos. 38, 1 (2015).

    Google Scholar 

  22. J. Li, H. Gong, Q. Yang, Y. Xie, L. Yang, Z. Zhang, Appl. Phys. Lett. 104, 263901 (2014).

  23. K. Matyjaszewski and N. V. Tsarevsky, J. Am. Chem. Soc. 136 (18), 6513 (2014).

    Article  CAS  Google Scholar 

  24. X. Hu, G. Cui, N. Zhu, J. Zhai, K. Guo, Polymers 10 (1), 68 (2018).

    Article  Google Scholar 

  25. X. Hu, J. Li, H. Li, and Z. Zhang, J. Polym. Sci., Part A: Chem. 50, 3126 (2012).

    CAS  Google Scholar 

  26. X. Pan, M. A. Tasdelen, J. Laun, T. Junkers, Y. Yagci, K. Matyjaszewski, Prog. Polym. Sci. 62, 73 (2016).

    Article  CAS  Google Scholar 

  27. K. Matyjaszewski and N. V. Tsarevsky, J. Am. Chem. Soc. 136, 6513 (2014).

    Article  CAS  Google Scholar 

  28. E. Frick, A. Anastasaki, D. M. Haddleton, and C. Barner-Kowollik, J. Am. Chem. Soc. 137 (21), 6889 (2014).

    Article  Google Scholar 

  29. A. Anastasaki, V. Nikolaou, Q. Zhang, J. Burns, S. R. Samanta, C. Waldron, A. J. Haddleton, R. McHale, D. Fox, V. Percec, P. Wilson, D. M. Haddleton, J. Am. Chem. Soc. 136, 1141 (2014).

    Article  CAS  Google Scholar 

  30. X. Hu, J. Li, H. Li, and Z. Zhang, J. Polym. Sci., Part A: Chem. 51, 4378 (2013).

    CAS  Google Scholar 

  31. A. D. Khudyshkina, Yu. N. Luponosov, V. G. Shevchenko, and S. A. Ponomarenko, EXPRESS Polym. Lett. 15, 957 (2021).

    Article  CAS  Google Scholar 

  32. M. F. Zhang and T. P. Russell, Macromolecules 39, 3531 (2006).

    Article  CAS  Google Scholar 

  33. X. Hu, J. Li, H. Li, and Z. Zhang, J. Polym. Sci., Part A: Chem. 50, 3126 (2012).

    CAS  Google Scholar 

  34. H. Gong, J. Li, D. Di, N. Lib, Zh. Zhang, RSC Adv. 5, 19117 (2015).

    Article  CAS  Google Scholar 

  35. S. Tan, J. Xiong, Y. Zhao, J. Liu, Z. Zhang, J. Mater. Chem. C 6 (15), 1 (2018).

    Article  Google Scholar 

  36. N. Zhu, X. Hu, Y. Zhang, K. Zhang, Z. Li, K. Guo, Polym. Chem. 7, 474 (2016).

    Article  CAS  Google Scholar 

  37. S. Tan, J. Xiong, Y. Zhao, J. Liu, Z. Zhang, J. Mater. Chem. C 6 (15), 1 (2013).

    Google Scholar 

  38. U. Gaur, B. B. Wunderlich, and B. Wunderlich, J. Phys. Chem. Ref. Data 12, 29 (1983). https://doi.org/10.1063/1.555677

    Article  CAS  Google Scholar 

  39. U. Gaur, S.-F. Lau, B. B. Wunderlich, and B. Wunderlich, J. Phys. Chem. Ref. Data 11, 1065 (1982). https://doi.org/10.1063/1.555671

    Article  CAS  Google Scholar 

  40. R. Gregorio, Jr., J. Appl. Polym. Sci. 100 (4), 3272 (2006).

    Article  CAS  Google Scholar 

  41. J. Li, S. Tan, S. Ding, H. Li, L. Yang, Z. Zhang, J. Mater. Chem. 22, 23468 (2012).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-73-30028.

The 1Н NMR study was carried out at the Shared-Use Polymer Research Center within the framework of the State Assignment from the Ministry of Science and Higher Education of Russia (subject FFSM-2021-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Luponosov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleimyuk, E.A., Kosyakova, A., Buzin, A.I. et al. Polyvinylidene Fluoride Copolymers with Grafted Polyethyl Methacrylate Chains: Synthesis and Thermal and Dielectric Properties. Polym. Sci. Ser. C 64, 200–210 (2022). https://doi.org/10.1134/S1811238222700138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238222700138

Navigation