Skip to main content
Log in

Thermal Behavior (–180 ≤ T ≤ 1000°C) of Magnesium Orthosilicate Hydroxylclinohumite Mg5(SiO4)2(OH,F)2

  • BRIEF MESSAGE
  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Hydroxylclinohumite Mg5(SiO4)2(OH,F)2 is a common monoclinic orthosilicate of the humite group, which, on the one hand, is a prototype of promising materials, and, on the other hand, is an important source of information about both the transport and the presence of water in the Earth’s mantle, and therefore studying its thermal behavior is of particular interest. In this paper, the mineral is studied by powder X-ray diffraction for the first time in a wide temperature range (–180 ≤ T ≤ 1000°C). The temperature limits for the existence of the phase are established, the principal values of the thermal expansion tensor are calculated, and a structural interpretation of thermal expansion is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Geijer, P., Norbergite and fluoborite, two new minerals from the Norberg mining district, Geol. Foren. Stockholm Förhandl., 1926, vol. 48, no. 1, pp. 84–85.

    Article  CAS  Google Scholar 

  2. Berry, A.J. and James, M., Refinement of hydrogen positions in natural chondrodite by powder neutron diffraction: Implications for the stability of humite minerals, Mineral. Mag., 2002, vol. 66, no. 3, pp. 441–449.

    Article  CAS  Google Scholar 

  3. Ribbe, P.H. and Gibbs, G.V., Crystal structures of the humite minerals: III. Mg/Fe ordering in humite and its relation to other ferromagnesian silicates, Am. Mineral., 1971, vol. 56, nos. 7–8, pp. 1155–1173.

    Google Scholar 

  4. Friedrich, A., Lager, G.A., Kunz, M., Chakoumakos, B.S., Smyth, J.R., and Schultz, A.J., Temperature-dependent single-crystal neutron diffraction study of natural chondrodite and clinohumites, Am. Mineral., 2001, vol. 86, no. 9, pp. 981–989.

    Article  CAS  Google Scholar 

  5. Pekov, I.V., Gerasimova, E.I., Chukanov, N.V., Kabalov, Yu.K., Zubkova, N.V., Zadov, A.E., Yapaskurt, V.O., Gekimyants, V.M., and Pushcharovskii, D.Yu., Hydroxylchondrodite Mg5(SiO4)2(OH)2: A new mineral of the humite group and its crystal structure, Dokl. Earth Sci., 2011, vol. 436, pp. 230–236.

    Article  CAS  Google Scholar 

  6. Ferraris, G., Prencipe, M., Sokolova, E., Gekimyants, V.M., and Spiridonov, E.M., Hydroxylclinohumite, a new member of the humite group: Twinning, crystal structure and crystal chemistry of the clinohumite subgroup, Z. Kristallogr., Cryst. Mater., 2000, vol. 215, no. 3, pp. 169–173.

    CAS  Google Scholar 

  7. Wunder, B., Medenbach, O., Daniels, P., and Schreyer, W., First synthesis of the hydroxyl end-member of humite, Mg7Si3O12(OH)2, Am. Mineral., 1995, vol. 80, pp. 638–640.

    CAS  Google Scholar 

  8. Redhammer, G.J., Roth, G., and Amthauer, G., Ca3GeO4Cl2 with a norbergite-like structure, Acta Crystallogr., Sect. C, 2007, vol. 63, pp. i69–i72.

    Article  CAS  Google Scholar 

  9. Voron’ko, Yu.K., Sobol’, A.A., Shukshin, V.E., Zagumennyi, A.I., Zavartsev, Yu.D., and Kutovoi, S.A., Structural transformations in LiGd9(SiO4)6O2 and Ca2Gd8(SiO4)6O2 crystals containing isolated [SiO4] complexes: Raman spectroscopic study, Phys. Solid State, 2012, vol. 54, pp. 1635–1642.

    Article  Google Scholar 

  10. Melcher, C.L. and Schweitzer, J.S., Cerium-doped lutetium oxyorthosilicate: A fast, efficient new scintillator, IEEE Trans. Nucl. Sci., 1992, vol. 39, no. 4, pp. 502–505.

    Article  CAS  Google Scholar 

  11. Yu, Ye., Smyth, J.R., Jacobsen, S.D., and Céline, G., Crystal chemistry, thermal expansion, and Raman spectra of hydroxyl-clinohumite: Implications for water in earth’s interior, Contrib. Mineral. Petrol., 2013, vol. 165, pp. 563–574.

    Article  Google Scholar 

  12. Liu, D., Pang, Y., Yu, Ye., Jin, Z., Smyth, J.R., Yang, Y., Zhang, Z., and Wang, Z., Crystal chemistry, thermal expansion, and Raman spectra of hydroxyl-clinohumite: Implications for water in Earth’s interior, Contrib. Mineral. Petrol., 2013, vol. 165, pp. 563–574.

    Article  Google Scholar 

  13. Sasaki, A., Himeda, A., Konaka, H., and Muroyama, N., Ab initio crystal structure analysis based on powder diffraction data used PDXL, Rigaku J., 2010, vol. 26, pp. 10–14.

    CAS  Google Scholar 

  14. Bubnova, R.S., Firsova, V.A., Volkov, S.N., and Filatov, S.K., Rietveldtotensor: Program for processing powder X-ray diffraction data under variable conditions, Glass Phys. Chem., 2018, vol. 44, pp. 33–40.

    Article  CAS  Google Scholar 

  15. Momma, K. and Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 2011, vol. 44, pp. 1272–1276.

    Article  CAS  Google Scholar 

  16. Zulumyan, N., Isahakyan, A., Beglaryan, H., and Melikyan, S., A study of thermal decomposition of antigorite from dunite and lizardite from peridotite, J. Therm. Anal. Calorim., 2018, vol. 131, pp. 1201–1211.

    Article  CAS  Google Scholar 

  17. Biryukov, Ya.P., Bubnova, R.S., Filatov, S.K., and Goncharov, A.G., Synthesis and thermal behavior of Fe3O2(BO4) oxoborate, Glass Phys. Chem., 2016, vol. 42, no. 2, pp. 202–206.

    Article  CAS  Google Scholar 

  18. Biryukov, Ya.P., Filatov, S.K., Vagizov, F.G., and Zinatullin, A.L., and Bubnova, R.S., Thermal expansion of FeBO3 and Fe3BO6 antiferromagnets near the Neel temperature, J. Struct. Chem., 2018, vol. 59, no. 8, pp. 1980–1988.

    Article  CAS  Google Scholar 

  19. Biryukov, Ya.P., Bubnova, R.S., Dmitrieva, N.V., and Filatov, S.K., Thermal behavior of antiferromagnets FeBO3 and Fe3BO6 at negative temperatures, Glass Phys. Chem., 2019, vol. 45, no. 2, p. 147.

    Article  CAS  Google Scholar 

  20. Filatov, S.K., General concept of increasing crystal symmetry with an increase in temperature, Crystallogr. Rep., 2011, vol. 56, no. 6, pp. 953–961.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The X-ray experiments were performed using the equipment of the resource center of St. Petersburg State University “X-Ray Diffraction Methods of Research.”

Funding

The sampling for experiments and interpreting the X-ray data was carried out as part of a state task of the RF Ministry of Science and Higher Education RF (project no. 0081-2022-0002, Institute of Silicate Chemistry, Russian Academy of Sciences), and the generalization of the results of the X-ray experiments was supported by the Russian Science Foundation (project no. 22-13-00317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Bubnova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biryukov, Y.P., Bubnova, R.S. & Firsova, V.A. Thermal Behavior (–180 ≤ T ≤ 1000°C) of Magnesium Orthosilicate Hydroxylclinohumite Mg5(SiO4)2(OH,F)2. Glass Phys Chem 49, 206–211 (2023). https://doi.org/10.1134/S1087659622601113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622601113

Keywords:

Navigation