Skip to main content
Log in

Fischer Reaction in the Synthesis of New Triterpene Indoles of the Fusidane Series

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The Fischer reaction of 3,11-dioxo derivatives of fusidic acid and its esters with phenylhydrazine chemoselectively occurred at the 3-position with the formation of indole-fused fusidane triterpenoids. The reaction with 3-chlorophenylhydrazine under similar conditions afforded mixtures of isomeric 6- and 4-chloro derivatives at a ratio of 3:2. 2,4-Dinitrophenylhydrazine reacted with the same fusidane diketones to give the corresponding hydrazones at the 3-oxo group. Biological screening of the synthesized compounds revealed derivatives exhibiting a high antibacterial activity against methicillin-resistant Staphylococcus aureus with a minimum inhibitory concentration of ≤0.25 μg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Sundberg, R.J., Indoles, London: Academic, 1996. https://doi.org/10.1016/B978-0-12-676945-6.X5019-4

  2. Austin, J.F. and MacMillan, D.W.C., J. Am. Chem. Soc., 2002, vol. 124, p. 1172. https://doi.org/10.1021/ja017255c

    Article  CAS  PubMed  Google Scholar 

  3. Wan, Y.C., Li, Y.H., Yan, C.X., Yan, M., and Tang, Z.L., Eur. J. Med. Chem., 2019, vol. 183, article ID 111691. https://doi.org/10.1016/j.ejmech.2019.111691

  4. Wang, Q., Arnst, K.E., Wang, Y., Kumar, G., Ma, D., White, S.W., Miller, D.D., Li, W., and Li, W., J. Med. Chem., 2019, vol. 62, p. 6734. https://doi.org/10.1021/acs.jmedchem.9b00706

    Article  CAS  PubMed  Google Scholar 

  5. Hansen, K.Ø., Andersen, J.H., Bayer, A., Pandey, S.K., Lorentzen, M., Jørgensen, K.B., Sydnes, M.O., Guttormsen, Y., Baumann, M., Koch, U., Klebl, B., Eickhoff, J., Haug, B.E., Isaksson, J., and Hansen, E.H., J. Med. Chem., 2019, vol. 62, p. 10167. https://doi.org/10.1021/acs.jmedchem.9b01006

    Article  CAS  PubMed  Google Scholar 

  6. Chio, C.-M., Huang, Y.-C., Chou, Y.-C., Hsu, F.-C., Lai, Y.-B., and Yu, C.-S., ACS Med. Chem. Lett., 2020, vol. 11, p. 589. https://doi.org/10.1021/acsmedchemlett.0c00064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zidar, N., Secci, D., Tomasič, T., Mašič, L.P., Kikelj, D., Passarella, D., Argaez, A.N., Hyeraci, M., and Via, L.D., ACS Med. Chem. Lett., 2020, vol. 11, p. 691. https://doi.org/10.1021/acsmedchemlett.9b00557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chadha, N. and Silakari, O., Eur. J. Med. Chem., 2017, vol. 134, p. 159. https://doi.org/10.1016/j.ejmech.2017.04.003

    Article  CAS  PubMed  Google Scholar 

  9. Ihnen, M., zu Eulenburg, C., Kolarova, T., Qi, J.W., Manivong, K., Chalukya, M., Dering, J., Anderson, L., Ginther, C., Meuter, A., Winterhoff, B., Jones, S., Velculescu, V.E., Venkatesan, N., Rong, H.-M., Dandekar, S., Udar, N., Jänicke, F., Los, G., Slamon, D.J., and Konecny, G.E., Mol. Cancer Ther., 2013, vol. 12, p. 1002. https://doi.org/10.1158/1535-7163.MCT-12-0813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pham, K.N., Lewis-Ballester, A., and Yeh, S.R., J. Am. Chem. Soc., 2019, vol. 141, p. 18771. https://doi.org/10.1021/jacs.9b08871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McGowan, D.C., Balemans, W., Embrechts, W., Motte, M., Keown, J.R., Buyck, C., Corbera, J., Funes, M., Moreno, L., Cooymans, L., Tahri, A., Eymard, J., Stoops, B., Strijbos, R., den Berg, J.V., Fodor, E., Grimes, J.M., Koul, A., Jonckers, T.H.M., Raboisson, P., and Guillemont, J., J. Med. Chem., 2019, vol. 62, p. 9680. https://doi.org/10.1021/acs.jmedchem.9b01091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garai, S., Kulkarni, P.M., Schaffer, P.C., Leo, L.M., Brandt, A.L., Zagzoog, A., Black, T., Lin, X., Hurst, D.P., Janero, D.R., Abood, M.E., Zimmo­witch, A., Straiker, A., Pertwee, R.G., Kelly, M., Szczesniak, A.M., Denovan-Wright, E.M., Mackie, K., Hohmann, A.G., Reggio, P.H., Laprairie, R.B., and Thakur, G.A., J. Med. Chem., 2020, vol. 63, p. 542. https://doi.org/10.1021/acs.jmedchem.9b01142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amaradhi, R., Banik, A., Mohammed, S., Patro, V., Rojas, A., Wang, W., Motati, D.R., Dingledine, R., and Ganesh, T., J. Med. Chem., 2020, vol. 63, p. 1032. https://doi.org/10.1021/acs.jmedchem.9b01218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baqi, Y., Phillaiyar, T., Abdelrahman, A., Kaufmann, O., Alshaibani, S., Rafehi, M., Ghasimi, S., Akari, R., Ritter, K., Simon, K., Spinrath, A., Kostenis, E., Zhao, Q., Köse, M., Namasivayam, V., and Müller, C.E., J. Med. Chem., 2018, vol. 61, p. 8136. https://doi.org/10.1021/acs.jmedchem.7b01768

    Article  CAS  PubMed  Google Scholar 

  15. Baird-Lambert, J., Davis, P.A., and Taylor, K.M., Clin. Exp. Pharmacol. Physiol., 1982, vol. 9, p. 203. https://doi.org/10.1111/j.1440-1681.1982.tb00798.x

    Article  CAS  PubMed  Google Scholar 

  16. Group, P.C., Lancet, 2001, vol. 358, p. 1033. https://doi.org/10.1016/S0140-6736(01)06178-5

    Article  Google Scholar 

  17. Zhou, L.M., Kong, F.D., Fan, P., Ma, Q.Y., Xie, Q.Y., Li, J.H., Zheng, H.Z., Zheng, Z.H., Yuan, J.Z., Dai, H.F., Luo, Q.Q., and Zhao, Y.X., J. Nat. Prod., 2019, vol. 82, p. 2638. https://doi.org/10.1021/acs.jnatprod.9b00620

    Article  CAS  PubMed  Google Scholar 

  18. Findlay, A., Foot, J.S., Buson, A., Deodhar, M., Jarnicki, A.G., Hansbro, P.M., Liu, G., Schilter, H., Turner, C.I., Zhou, W., and Jarolimek, W., J. Med. Chem., 2019, vol. 62, p. 9874. https://doi.org/10.1021/acs.jmedchem.9b01283

    Article  CAS  PubMed  Google Scholar 

  19. Norwood, V.M. IV, Brice-Tutt, A.C., Eans, S.O., Stacy, H.M., Shi, G., Ratnayake, R., Rocca, J.R., Abboud, K.A., Li, C., Luesch, H., McLaughlin, J.P., and Huigens, R.W. III, J. Med. Chem., 2020, vol. 63, p. 5119. https://doi.org/10.1021/acs.jmedchem.9b01924

    Article  CAS  Google Scholar 

  20. Allen, G.R., Jr., Pidacks, C., and Weiss, M.J., J. Am. Chem. Soc., 1966, vol. 88, no. 11, p. 2536. https://doi.org/10.1021/ja00963a032

    Article  CAS  Google Scholar 

  21. Garbett, N.C. and Graves, D.E., Curr. Med. Chem.: Anti-Cancer Agents, 2004, vol. 4, p. 149. https://doi.org/10.2174/1568011043482070

    Article  CAS  PubMed  Google Scholar 

  22. Gu, X.H., Wan, X.Z., and Jaing, B., Bioorg. Med. Chem. Lett., 1999, vol. 9, p. 569. https://doi.org/10.1016/S0960-894X(99)00037-2

    Article  CAS  PubMed  Google Scholar 

  23. Fischer, E. and Jourdan, F., Ber. Dtsch. Chem. Ges., 1883, vol. 16, p. 2241. https://doi.org/10.1002/cber.188301602141

    Article  Google Scholar 

  24. Porcheddu, A., Mura, M.G., De Luca, L., Pizzetti, M., and Taddei, M., Org. Lett., 2012, vol. 14, p. 6112. https://doi.org/10.1021/ol3030956

    Article  CAS  PubMed  Google Scholar 

  25. Park, J., Kim, D.H., Das, T., and Cho, C.G., Org. Lett., 2016, vol. 18, p. 5098. https://doi.org/10.1021/acs.orglett.6b02541

    Article  CAS  PubMed  Google Scholar 

  26. Salimova, E.V., Magafurova, A.A., Tretyakova, E.V., Kukovinets, O.S., and Parfenova, L.V., Chem. Hetero­cycl. Compd., 2020, vol. 56, p. 800. https://doi.org/10.1007/s10593-020-02733-1

    Article  CAS  Google Scholar 

  27. Salimova, E.V., Mamaev, A.G., Tretyakova, E.V., Kukovinets, O.S., Mavzyutov, A.R., Shvets, K.Yu., and Parfenova, L.V., Russ. J. Org. Chem., 2018, vol. 54, p. 1411. https://doi.org/10.1134/S1070428018090245

    Article  CAS  Google Scholar 

  28. Blaskovich, M.A., Zuegg, J., Elliott, A.G., and Cooper, M.A., ACS Infect. Dis., 2015, vol. 1, p. 285. https://doi.org/10.1021/acsinfecdis.5b00044

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The in vitro antimicrobial activity of compounds 1–20 was evaluated according to the program of the Community for Antimicrobial Drug Discovery (CO-ADD) under financial support by the Wellcome Trust (UK) and University of Queensland (Australia). The spectral studies were carried out at the Agidel regional joint center (Ufa Federal Research Center, Russian Academy of Sciences).

Funding

This study was performed according to state assignment no. AAAA-A19-119022290012-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Salimova.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2022, Vol. 58, No. 1, pp. 36–50 https://doi.org/10.31857/S0514749222010037.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimova, E.V., Parfenova, L.V. Fischer Reaction in the Synthesis of New Triterpene Indoles of the Fusidane Series. Russ J Org Chem 58, 25–37 (2022). https://doi.org/10.1134/S1070428022010031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428022010031

Keywords:

Navigation