Skip to main content

Advertisement

Log in

Regio- and Enantioselective Epoxy Ring Opening of 2,3-Epoxy-3-phenyl Alcohols/Carboxylic Acids and Their Derivatives

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The review highlights the progress of ring opening of 2,3-epoxy-3-phenyl alcohols/carboxylic acids and their derivatives over the past few decades. The presence of a phenyl group in epoxy alcohols/carboxylic acids make ring opening more complicated due to increase of steric hindrance and polarity. The varieties of methods for catalysis, organic solvent/water solvent and Lewis acid/base incorporation of epoxy groups into the target moiety attract more attention. In the ring-opening reaction of epoxides with water, alcohols, amines, ammonia, phenols, hydrogen halides, acids and thiols, the use of significant catalytic systems and appropriate solvents is often put into consideration firstly. Ring-opening reactions of epoxides in the presence of catalysts need to be explored, including 2,3-epoxy phenyl alcohols, phenylglycidyl ethers, and other conversions. The review will throw light on these reactions and inspire more efforts into the development of new ring opening reactions of epoxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Caron, M. and Sharpless, K.B., J. Org. Chem., 1985, vol. 50, p. 1557. https://doi.org/10.1021/jo00209a047

    Article  CAS  Google Scholar 

  2. Caron, M., Carlier, P.R., and Sharpless, K.B., J. Org. Chem., 1988, vol. 53, p. 5185. https://doi.org/10.1021/jo00256a063

    Article  CAS  Google Scholar 

  3. Ahmad, S., Zahoor, A.F., Naqvi, S.A.R., and Akash, M., Mol. Diversity, 2018, vol. 22, p. 191. https://doi.org/10.1007/s11030-017-9796-x

    Article  CAS  Google Scholar 

  4. Wang, C. and Yamamoto, H., Angew. Chem., Int. Ed., 2014, vol. 53, p. 13920. https://doi.org/10.1002/anie.201408732

    Article  CAS  Google Scholar 

  5. Alkofanhi, A., Ma, W.W., McKenzie, A.T., Byrn, S.R., and McLaughlin, J.L., J. Nat. Prod., 1989, vol. 52, p. 1371. https://doi.org/10.1021/np50066a037

    Article  Google Scholar 

  6. Fang, X.P., Anderson, J.E., Chang, C.J., McLaughlin, J.L., and Fanwick, P.E., J. Nat. Prod., 1991, vol. 54, p. 1034. https://doi.org/10.1021/np50076a017

    Article  CAS  PubMed  Google Scholar 

  7. Canas, M., Poch, M., Verdaguer, X., Moyano, A., Pericás, A., and Riera, A., Tetrahedron Lett., 1991, vol. 32, p. 6931. https://doi.org/10.1016/0040-4039(91)80447-E

    Article  CAS  Google Scholar 

  8. Martίn, R., Alcón, M., Pericàs, M.A., and Riera, A., J. Org. Chem., 2002, vol. 67, p. 6896. https://doi.org/10.1021/jo025832p

    Article  CAS  Google Scholar 

  9. Chen, X., Gu, W., Jing, X., and Pan, X., Synth. Commun., 2002, vol. 32, p. 557. https://doi.org/10.1081/SCC-120002402

    Article  CAS  Google Scholar 

  10. Lou, B.-L., Zhang, Y.-Z., Guo, G.-Z.. and Dai, L.-X., Acta Chim. Sin. (Engl. Ed.), 1989, vol. 6, p. 554. https://doi.org/10.1002/cjoc.19890070612

    Article  Google Scholar 

  11. Wang, C. and Yamamoto, H., Angew. Chem., Int. Ed., 2014, vol. 53, p. 13920. https://doi.org/10.1002/anie.201408732

    Article  CAS  Google Scholar 

  12. Wang, C. and Yamamoto, H., Org. Lett., 2014, vol. 16, p. 5937. https://doi.org/10.1021/ol503091n

    Article  CAS  PubMed  Google Scholar 

  13. Wang, C., Luo, L., and Yamamoto, H., Acc. Chem. Res., 2016, vol. 49, p. 193. https://doi.org/10.1021/acs.accounts.5b00428

    Article  CAS  PubMed  Google Scholar 

  14. Luo, L. and Yamamoto, H., Org. Biomol. Chem., 2015, vol. 13, p. 10466. https://doi.org/10.1039/C5OB01808K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zaidlewicz, M. and Brown, H.C., Encyclopedia of Reagents for Organic Synthesis, Paquette, L.A., Ed., Wiley: Chichester, 1995.

  16. Konno, H., Toshiro, E., and Hinoda, N., Synthesis, 2003, vol. 2003, no. 14, p. 2161. https://doi.org/10.1055/s-2003-41049

    Article  CAS  Google Scholar 

  17. Kamble, V.T. and Joshi, N.S., Green Chem. Lett. Rev., 2010, vol. 3, p. 275. https://doi.org/10.1080/17518251003776885

    Article  CAS  Google Scholar 

  18. Mukeriee, P., Abid, M., and Schroeder, F.C., Org. Lett., 2010, vol. 12, p. 3986. https://doi.org/10.1021/ol1015306

    Article  CAS  Google Scholar 

  19. Dixon, D.J., Foster, A.C., and Ley, S.V., Org. Lett., 2000, vol. 2, p. 123. https://doi.org/10.1021/ol991214s

    Article  CAS  PubMed  Google Scholar 

  20. Pal, S., Tetrahedron, 2006, vol. 62, p. 3171. https://doi.org/10.1002/chin.200627242

    Article  CAS  Google Scholar 

  21. Oikawa, Y., Nishi, T., and Yonemitsu, O., Tetrahedron Lett., 1983, vol. 24, p. 3635. https://doi.org/10.1016/S0040-4039(00)88188-5

    Article  CAS  Google Scholar 

  22. Rengasamy, R., Curtis-Long, M.J., Seo, W.D., Jeong, I.-Y., and Park, K.H., J. Org. Chem., 2008, vol. 73, p. 2898. https://doi.org/10.1021/jo702480y

    Article  CAS  PubMed  Google Scholar 

  23. Kiran, I.N.C., Santhosh, R.R., Suryavanshi, G., and Sudalai, A.,Tetrahedron Lett., 2011, vol. 52, p. 438. https://doi.org/10.1016/j.tetlet.2010.11.085

    Article  CAS  Google Scholar 

  24. Liu, R.Y., Wasa, M., and Jacobsen, E.N., Tetrahedron Lett., 2015, vol. 56, p. 3428. https://doi.org/10.1016/j.tetlet.2015.01.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Green, J.E., Bender, D.M., Jackson, S., O’Donnell, M.J., and McCarthy, J.R., Org. Lett., 2009, vol. 11, p. 807. https://doi.org/10.1021/ol802325h

    Article  CAS  PubMed  Google Scholar 

  26. Masutani, K., Minowa, T., Hagiwara, Y., and Mukaiyama, T.,Bull. Chem. Soc. Jpn., 2006, vol. 79, p. 1106. https://doi.org/10.1002/chin.200646051

    Article  CAS  Google Scholar 

  27. Shi, Y.-J., Hughes, D.L., and McNamara, J.M., Tetrahedron Lett., 2003, vol. 44, p. 3609. https://doi.org/10.1016/S0040-4039(03)00728-7

    Article  CAS  Google Scholar 

  28. Zhang, Y.-Q., Poppel, C., Panfilova, A., Bohle, F., Grimme, S., and Gansäuer, A., Angew. Chem., Int. Ed., 2017, vol. 56, p. 9719. https://doi.org/10.1002/anie.201702882

    Article  CAS  Google Scholar 

  29. Grimme, S., Chem. Eur. J., 2012, vol. 18, p. 9955. https://doi.org/10.1002/chem.201200497

    Article  CAS  PubMed  Google Scholar 

  30. Henriques, D.S.G., Zimmer, K., Klare, S., Meyer, A., Rojo-Wiechel, E., Bauer, M., Sure, R., Grimme, S., Schiemann, O., Flowers, R.A., and Gansäuer, A., Angew. Chem., Int. Ed., 2016, vol. 55, p. 7671. https://doi.org/10.1002/anie.201601242

    Article  CAS  Google Scholar 

  31. Jian, Z., Kehr, G., Daniliuc, C.G., Wibbeling, B., Wiegand, T., Siedow, M., Eckert, H., Bursch, M., Grimme, S., and Erker, G.J., J. Am. Chem. Soc., 2017, vol. 139, p. 6474. https://doi.org/10.1021/jacs.7b02548

    Article  CAS  PubMed  Google Scholar 

  32. Szejtli, J. and Osa, T., Comprehensive Supramolecular Chemistry, Atwood, J.M. and Lehn, J.-M., Eds., New York: Pergamon, 1996, vol. 3.

  33. Surendra, K., Srilakshmi, K.N., and Rama Rao, K., Synlett, 2005, vol. 2005, no. 3, p. 506. https://doi.org/10.1055/s-2005-862359

  34. Narender, M., Reddy, M.S., Nageswar, T.V.D., and Rao, K.R.,Helv. Chim. Acta, 2007, vol. 90, p. 1107. https://doi.org/10.1002/hlca.200790109

    Article  CAS  Google Scholar 

  35. Wright, J.L., Gregory, T.F., Heffner, T.G., MacKenzie, R.G., Pugsley, T.A., Van der Meulen, S., and Wise, L.D., Bioorg. Med. Chem. Lett., 1997, vol. 7, p. 1377. https://doi.org/10.1016/S0960-894X(97)00233-3

    Article  CAS  Google Scholar 

  36. Baker, N.R., Byrne, N.G., Economide, A.P., and Javeld, T.,Chem. Pharm. Bull., 1995, vol. 43, p. 1045. https://doi.org/10.1248/cpb.43.1045

    Article  CAS  PubMed  Google Scholar 

  37. Kirkup, M.P., Rizvi, R., Shankar, B.B., Duggar, S., Clader, J.W., McCombie, S.W., Lin, S.-L., Yumibe, N., Huie, K., Heek, M.V., Compton, D.S., Davis, H.R., Davis, H.R., Jr., and McPhail, A.T., Bioorg. Med. Chem. Lett., 1996, vol. 6, p. 2069. https://doi.org/10.1016/0960894X(96)00365-4

    Article  CAS  Google Scholar 

  38. Chen, C.S., Fujimoto, Y., Girdaukas, G., and Charles, J.S.,J. Am. Chem. Soc., 1982, vol. 104, p. 7294. https://doi.org/10.1021/ja00389a064

    Article  CAS  Google Scholar 

  39. Zhang, L., Shen, H.-L., Wei, C., Chen, Y.-Y., and Zhu, Q.,Catal. Lett., 2014, vol. 144, p. 2176. https://doi.org/10.1007/s10562-014-1380-8

    Article  CAS  Google Scholar 

  40. Vidal-Ferran, A., Moyano, A., Pericàs, M.A., and Riera, A.,J. Org. Chem., 1997, vol. 62, p. 4970. https://doi.org/10.1021/jo9701445

    Article  CAS  Google Scholar 

  41. Chini, M., Crotti, P., Flippin, L.A., Gardelli, C., Giovani, E., Macchia, F., and Pineschi, M., J. Org. Chem., 1993, vol. 58, p. 1221. https://doi.org/10.1021/jo00057a040

    Article  CAS  Google Scholar 

  42. Canas, M., Poch, M., Verdaguer, X., Moyano, A., Pericàs, M.A., and Riera, A., Tetrahedron Lett., 1991, vol. 32, p. 6931. https://doi.org/10.1016/0040-4039(91)80447-E

    Article  CAS  Google Scholar 

  43. Popa, D., Puigjaner, C., Gómez, M., Buchholz, J.B., Ferran, A.V., and Pericàs, M.A., Adv. Synth. Catal., 2007, vol. 349, p. 2265. https://doi.org/10.1002/adsc.200600599

    Article  CAS  Google Scholar 

  44. Alza, E., Bastero, A., Jansat, S., and Pericàs, M.A., Tetrahedron: Asymmetry, 2008, vol. 19, p. 374. https://doi.org/10.1016/j.tetasy.2008.01.001

    Article  CAS  Google Scholar 

  45. Michalek, F., Lagunas, A., Jimeno, C., and Pericas, M.A., J. Mater. Chem., 2008, vol. 18, p. 4692. https://doi.org/10.1039/B808383E

    Article  CAS  Google Scholar 

  46. Cattoën, X. and Pericàs, M.A., Tetrahedron, 2009, vol. 65, p. 8199. https://doi.org/10.1016/j.tet.2009.07.053

    Article  CAS  Google Scholar 

  47. Bandini, M., Cozzi, P.G., Melchiorre, P., and Umani-Ronchi, A.,Angew. Chem., Int. Ed., 2004, vol. 43, p. 84. https://doi.org/10.1002/anie.200352073

    Article  CAS  Google Scholar 

  48. Tanaka, T., Hiramatsu, K., Kobayashi, Y., and Ohno, H., Tetrahedron, 2005, vol. 61, p. 6726. https://doi.org/10.1016/j.tet.2005.05.006

    Article  CAS  Google Scholar 

  49. Islas-González, G., Puigjaner, C., Vidal-Ferran, A., Moyano, A., Riera, A., and Pericàs, M.A., Tetrahedron Lett., 2004, vol. 45, p. 633. https://doi.org/10.1016/j.tetlet.2004.06.069

    Article  CAS  Google Scholar 

  50. Liu, Y.-H., Hu, H.-C., Ma, Z.-C., Dong, Y.-F., Wang, C., and Pang, Y.-M., Monatsh. Chem., 2018, vol. 149, p. 551. https://doi.org/10.1007/s00706-017-2092-8

    Article  CAS  Google Scholar 

  51. Cardillo, G., and Tomasini, C., Chem. Soc. Rev., 1996, vol. 25, p. 117. https://doi.org/10.1039/cs9962500117

    Article  CAS  Google Scholar 

  52. Guggisberg, A. and Hesse, M., The Alkaloids: Chemistry and Biology, Cordell, G.A., Ed., San Diego: Academic, 1998, vol. 50, p. 219. https://doi.org/10.1016/S1099-4831(08)60044-9

    Chapter  Google Scholar 

  53. Amantini, D., Fringuelli, F., Pizzo, F., and Vaccaro, L., J. Org. Chem., 2001, vol. 66, p. 6734. https://doi.org/10.1021/jo015814s

    Article  CAS  PubMed  Google Scholar 

  54. Fringuelli, F., Pizzo, F., Rucci, M., and Vaccaro, L., J. Org. Chem., 2003, vol. 68, p. 7041. https://doi.org/10.1021/jo034752y

    Article  CAS  PubMed  Google Scholar 

  55. Fringuelli, F., Pizzo, F., and Vaccaro, L., J. Org. Chem., 2001, vol. 66, p. 4719. https://doi.org/10.1021/jo010373y

    Article  CAS  PubMed  Google Scholar 

  56. Fringuelli, F., Pizzo, F., Tortoioli, S., and Vaccaro, L.,Org. Lett., 2005, vol. 7, p. 4411. https://doi.org/10.1021/ol051582y

    Article  CAS  PubMed  Google Scholar 

  57. Borah, J.C., Boruwa, J., and Barua, N.C., Curr. Org. Synth., 2007, vol. 4, p. 175. https://doi.org/10.2174/157017907780598899

    Article  CAS  Google Scholar 

  58. Vu, A.T., Cohn, S.T., Terefenko, E.A., Moore, W.J., Zhang, P., Mahaney, P.E., Trybulski, E.J., Goljer, I., Dooley, R., Bray, J.A., Johnston, G.H., Leiter, J., and Deecher, D.C., Bioorg. Med. Chem. Lett., 2009, vol. 19, p. 2464. https://doi.org/10.1016/j.bmcl.2009.03.054

    Article  CAS  PubMed  Google Scholar 

  59. Li, X.Z., Zhu, C.J., Li, C.H., Wu, K.M, and Huang, L., Eur. J. Med. Chem., 2010, vol. 45, p. 5531. https://doi.org/10.1016/j.ejmech.2010.08.041

    Article  CAS  PubMed  Google Scholar 

  60. Sappino, C., Mari, A., Mantineo, A., Moliterno, M., Palagri, M., Tatangelo, C., and Righi, G., Org. Biomol. Chem., 2018, vol. 16, p. 1860. https://doi.org/10.1039/C8OB00165K

    Article  CAS  PubMed  Google Scholar 

  61. Yamakawa, M. and Noyori, R., J. Am. Chem. Soc., 1995, vol. 117, p. 6327. https://doi.org/10.1021/ja00128a023

    Article  CAS  Google Scholar 

  62. Yamakawa, M. and Noyori, R., Organometallics, 1999, vol. 18, p. 128. https://doi.org/10.1021/om9807405

    Article  CAS  Google Scholar 

  63. Afonkin, A.A., Kostrikin, L.M., Shumeiko, A.E., Popov, A.F., Matveev, A.A., Matvienko, V.N., and Zabudkin, A.F., Russ. Chem. Bull., Int. Ed., 2012, vol. 61, p. 2149. https://doi.org/10.1007/s11172-012-0302-4

    Article  CAS  Google Scholar 

  64. Wilcke, D. and Bach, T., Org. Biomol. Chem., 2012, vol. 10, p. 6498. https://doi.org/10.1039/c2ob25988e

    Article  CAS  PubMed  Google Scholar 

  65. Tak, R., Kumar, M., Menapara, T., Choudhary, M.K., Kureshy, R.I., and Khan, N.H., ChemCatChem, 2017, vol. 9, p. 322. https://doi.org/10.1002/cctc.201601208

    Article  CAS  Google Scholar 

  66. Wei, C., Ling, J.L., Shen, H.L., and Zhu, Q., Molecules, 2014, vol. 19, p. 8067. https://doi.org/10.3390/molecules19068067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhao, W., Kotik, M., Iacazio, G., and Archelasa, A., Adv. Synth. Catal., 2015, vol. 357, p. 1895. https://doi.org/10.1002/adsc.201401164

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Luzhou Southwest Medical University Joint Project (2018 LZXNYD-ZK04), by the Luzhou Science and Technology Plan Project [2017-S-39(5/5)], and by the Collaborative Fund of Luzhou Municipal Government and Sichuan University (2018CDLZ-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Du.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, X., Du, X. Regio- and Enantioselective Epoxy Ring Opening of 2,3-Epoxy-3-phenyl Alcohols/Carboxylic Acids and Their Derivatives. Russ J Org Chem 56, 679–692 (2020). https://doi.org/10.1134/S107042802004017X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042802004017X

Keywords:

Navigation