Skip to main content
Log in

Cobalt Catalysts for Hydroformylation and Carboalkoxylation: History and Commercial Prospects

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The review deals with the development of a process for preparing cobalt catalysts for hydroformylation and carboalkoxylation. Common term oxo synthesis is used for these reactions. Theoretical principles of the classical synthesis of cobalt carbonyls are discussed, and the main directions of the modern development of oxo synthesis are considered. Much attention is paid to carboalkoxylation catalysts based on cobalt carbonyl complexes. The use of nitrogen bases as promoters of ethylene carboalkoxylation catalysts and the use of cobalt carbonyls on an inorganic support are analyzed. An approach to solving the problem of recycling oxo synthesis catalysts, alternative to heterogeneous catalysis, namely, thermoregulated phase-transfer cobalt catalysis, is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Patent DE 849548, Publ. 1938.

  2. Wender, I., Sternberg, H.W., and Orchin, M., J. Am. Chem. Soc., 1953, vol. 75, no. 12, pp. 3041–3042. https://doi.org/10.1021/ja01108a528

    Article  CAS  Google Scholar 

  3. Cornils, B., Herrmann, W.A., and Rasch, M., Angew. Chem. Int. Ed., 1994, vol. 33, no. 21, pp. 2144–2163. https://doi.org/10.1002/anie.199421441

    Article  Google Scholar 

  4. Beller, M., Cornils, B., Frohning, C.D., and Kohlpaintner, C.W., J. Mol. Catal. A, 1995, vol. 104, no. 1, pp. 17–85. https://doi.org/10.1016/1381-1169(95)00130-1

    Article  CAS  Google Scholar 

  5. Hood, D.M., Johnson, R.A., Carpenter, A.E., Younker, J.M., Vinyard, D.J., and Stanley, G.G., Science, 2020, vol. 367, no. 6477, pp. 542–548. https://doi.org/10.1126/science.aaw7742

    Article  CAS  PubMed  Google Scholar 

  6. Guo, J., Zhang, D., and Wang, X., ACS Catal., 2020, vol. 10, no. 22, pp. 13551–13559. https://doi.org/10.1021/acscatal.0c03161

    Article  CAS  Google Scholar 

  7. Delolo, F.G., Yang, J., Neumann, H., dos Santos, E.N., Gusevskaya, E.V., and Beller, M., ACS Sustain. Chem. Eng., 2021, vol. 9, no. 14, pp. 5148–5154. https://doi.org/10.1021/acssuschemeng.1c00205

    Article  CAS  Google Scholar 

  8. Takebayashi, S. and Fayzullin, R.R., Organometallics, 2021, vol. 40, no. 4, pp. 500–507. https://doi.org/10.1021/acs.organomet.0c00765

    Article  CAS  Google Scholar 

  9. Hebrard, F. and Kalck, P., Chem. Rev., 2009, vol. 109, no. 9, pp. 4272–4282. https://doi.org/10.1021/cr8002533

    Article  CAS  PubMed  Google Scholar 

  10. de Vries, J.G., Hydroformylation of alkenes: Industrial applications, Science of Synthesis: C-1 Building Blocks in Organic Synthesis 1, van Leeuwen, P.W.N.M., Ed., 2014, pp. 193–227.

    Google Scholar 

  11. Stanley, G.G., Hydroformylation (OXO) catalysis, Kirk–Othmer Encyclopedia of Chemical Technology, Wiley, 2017, pp. 1–19. https://doi.org/10.1002/0471238961.1524150209121.a01.pub2

    Article  CAS  Google Scholar 

  12. Hieber, W. and Scheclten, H., Z. Anorg. Allg. Chem., 1939, vol. 243, no. 2, pp. 145–163. https://doi.org/10.1002/zaac.19392430204

    Article  CAS  Google Scholar 

  13. Wender, I., Greenfield, H., and Orchin, M., J. Am. Chem. Soc., 1951, vol. 73, no. 6, pp. 2656–2658. https://doi.org/10.1021/ja01150a069

    Article  CAS  Google Scholar 

  14. Ercoli, R., Chini, P., and Massi-Mauri, M., Chim. Ind., 1959, vol. 41, pp. 132–135.

    CAS  Google Scholar 

  15. Chini, P., Chim. Ind., 1960, vol. 42, pp. 137–142.

    CAS  Google Scholar 

  16. Hieber, W. and Wiesboeck, R., Ber., 1958, vol. 91, no. 6, pp. 1146–1155. https://doi.org/10.1002/cber.19580910604

    Article  CAS  Google Scholar 

  17. Patent US 2734922A, Publ. 1956.

  18. Patent US 2757202A, Publ. 1956.

  19. Patent GB 667093A, Publ. 1952.

  20. Patent GB 679366A, Publ. 1952.

  21. Patent GB 708441A, Publ. 1954.

  22. Patent GB 740708A, Publ. 1955.

  23. Patent FR 1076680A, Publ. 1954.

  24. Patent US 2736750A, Publ. 1956.

  25. Vigranenko, Yu.T. and Rybakov, V.A., Zh. Prikl. Khim., 1979, vol. 52, no. 10, pp. 2182–2185.

    CAS  Google Scholar 

  26. Vigranenko, Yu.T., Rybakov, V.A., Mukhenberg, K.M., Semenova, T.A., and Tarasov, B.P., Koord. Khim., 1989, vol. 15, no. 1, pp. 103–107.

    CAS  Google Scholar 

  27. Patent RU 2077948 C1, 1997.

  28. Gankin, V.Yu. and Gurevich, G.S., Tekhnologiya oksosinteza (Oxo Synthesis Technology), Leningrad: Khimiya, 1981, pp. 112–120.

    Google Scholar 

  29. Rudkovskii, D.M., Trifel’, A.G., and Alekseeva, K.A., Khim. Prom–st., 1959, no. 8, pp. 652–658.

    Google Scholar 

  30. Wender, I., Levine, R., and Orchin, M., J. Am. Chem. Soc., 1950, vol. 72, no. 10, pp. 4375–4378. https://doi.org/10.1021/ja01166a012

    Article  CAS  Google Scholar 

  31. Sternberg, H.W., Wender, J., Friedel, R.A., and Orchin, M., J. Am. Chem. Soc., 1953, vol. 75, no. 11, pp. 2717–2720. https://doi.org/10.1021/ja01107a050

    Article  CAS  Google Scholar 

  32. Moore, E.J., Sullivan, J.M., and Norton, J.R., J. Am. Chem. Soc., 1986, vol. 108, no. 9, pp. 2257–2263. https://doi.org/10.1021/ja00269a022

    Article  CAS  PubMed  Google Scholar 

  33. Gorbunov, D.N., Nenasheva, M.V., and Kardashev, S.V., Russ. J. Appl. Chem., 2019, vol. 92, no. 8, pp. 1069−1076. https://doi.org/10.1134/S1070427219080032 

    Article  CAS  Google Scholar 

  34. Ziegler, T. and Versluis, L., Adv. Chem., 1992, vol. 230, pp. 75–93. https://doi.org/10.1021/ba-1992-0230.ch005

    Article  CAS  Google Scholar 

  35. Sokolov, B.G., Katsnel’son, M.G., and Tarasov, B.P., Zh. Prikl. Khim., 1990, vol. 63, no. 9, pp. 2008–2013.

    CAS  Google Scholar 

  36. Henrici-Olive, G. and Olive, S., Coordination and Catalysis, Weinheim: Chemie, 1977.

    Google Scholar 

  37. Mirbach, М.F. and Mirbach, М.I., J. Mol. Catal., 1985, vol. 32, no. 1, pp. 59–75. https://doi.org/10.1016/0304-5102(85)85033-1

    Article  CAS  Google Scholar 

  38. Tuba, R., Mika, L.T., Bodor, A., Pusztai, Z., Tóth, I., and Horváth, I.T., Organometallics, 2003, vol. 22, no. 8, pp. 1582–1584. https://doi.org/10.1021/om030058x

    Article  CAS  Google Scholar 

  39. Milstein, D., Acc. Chem. Res., 1988, vol. 21, no. 11, pp. 428–434. https://doi.org/10.1021/ar00155a007

    Article  CAS  Google Scholar 

  40. Patent RU 2727507 C1, 2020.

  41. Patent RU 2756174 C1, 2021.

  42. USSR Inventor’s Certificate no. 127250, 1958, Byull. Izobret., 1960, no. 7; Patent SU 127250, Publ. 1960.

  43. Gankin, V.Yu., Gordina, N.Ya., Efimova, N.I., Krinkin, D.P., Rudkovskii, D.M., and Trifel’, A.G., Hydroformylation on fixed catalyst, Gidroformilirovanie (Hydroformylation), Imyanitov, N.S., Ed., Leningrad: Khimiya, 1972, pp. 90–93.

    Google Scholar 

  44. Gankin, V.Yu., Gordina, N.Ya., Krinkin, D.P., Rudkovskii, D.M., and Trifel’, A.G., Khim. Tekhnol. Topl. Masel, 1966, vol. 11, no. 4, pp. 8–10.

    CAS  Google Scholar 

  45. Bronshtein, Yu.E., Gankin, V.Yu., Krinkin, D.P., and Rudkovskii, D.M., Zh. Fiz. Khim., 1966, vol. 40, no. 7, pp. 1475–1482.

    CAS  Google Scholar 

  46. Kumar, R. and Chikkali, S.H., J. Organomet. Chem., 2022, vol. 960, ID 122231. https://doi.org/10.1016/j.jorganchem.2021.122231

    Article  CAS  Google Scholar 

  47. Zhang, Y., Nagasaka, K., Qiu, X., and Tsubaki, N., Catal. Today, 2005, vol. 104, no. 1, pp. 48–54. https://doi.org/10.1016/j.cattod.2005.03.029

    Article  CAS  Google Scholar 

  48. Hu, X., Shi, Y., Zhang, Y., Zhu, B., Zhang, S., and Huang, W., Catal. Commun., 2015, vol. 59, pp. 45–49. https://doi.org/10.1016/j.catcom.2014.09.043

    Article  CAS  Google Scholar 

  49. Ahmed, M. and Sakthivel, A., J. Mol. Catal. A: Chemical, 2016, vol. 424, pp. 85–90. https://doi.org/10.1016/j.molcata.2016.08.016

    Article  CAS  Google Scholar 

  50. Hertrich, M.F., Scharnagl, F.K., Pews-Davtyan, A., Kreyenschulte, C.R., Lund, H., Bartling, S., Jackstell, R., and Beller, M., Chem. Eur. J., 2019, vol. 25, no. 21, pp. 5534–5538. https://doi.org/10.1002/chem.201806282

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, J., He, Y., Wang, F., Zheng, W., Huo, C., Liu, X., Jiao, H., Yang, Y., Li, Y., and Wen, X., ACS Catal., 2020, vol. 10, no. 2, pp. 914–920. https://doi.org/10.1021/acscatal.9b03228

    Article  CAS  Google Scholar 

  52. Zhao, J., He, Y., Wang, F., Yang, Y., Zheng, W., Huo, C., Jiao, H., Yang, Y., Li, Y., and Wen, X., J. Catal., 2021, vol. 404, pp. 244–249. https://doi.org/10.1016/j.jcat.2021.09.031

    Article  CAS  Google Scholar 

  53. Wei, B., Liu, X., Deng, Y., Hua, K., Chen, J., Wang, H., and Sun, Y., ACS Catal., 2021, vol. 11, no. 23, pp. 14319–14327. https://doi.org/10.1021/acscatal.1c04022

    Article  CAS  Google Scholar 

  54. Wang, H., Yuan, H., Chen, X., Wang, X., Zhao, K., and Shi, F., J. Phys. Chem. C, 2022, vol. 126, no. 1, pp. 273−281. https://doi.org/10.1021/acs.jpcc.1c09309

    Article  CAS  Google Scholar 

  55. Gong, H., Zhao, X., Qin, Y., Xu, W., Wei, X., Peng, Q., Ma, Y., Dai, S., An, P., and Hou, Z., J. Catal., 2022, vol. 408, pp. 245–260. https://doi.org/10.1016/j.jcat.2022.03.011

    Article  CAS  Google Scholar 

  56. Patent US 3420898A, Publ. 1969.

  57. Bungu, P.N. and Otto, S., Dalton Trans., 2007, no. 27, pp. 2876–2887. https://doi.org/10.1039/B702709E

    Article  Google Scholar 

  58. Wiese, K.D. and Obst, D., Topics in Organometallic Chemistry, Beller, M., Ed., 2014, vol. 18, pp. 1–33.

    Google Scholar 

  59. Beller, M. and Krauter, J.G.E., J. Mol. Catal. A: Chemical, 1999, vol. 143, nos. 1–3, pp. 31–39. https://doi.org/10.1016/S1381-1169(98)00360-4

    Article  CAS  Google Scholar 

  60. Haumann, M., Koch, H., and Schomacker, R., Catal. Today, 2003, vols. 79–80, pp. 43–49. https://doi.org/10.1016/S0920-5861(03)00041-5

    Article  CAS  Google Scholar 

  61. Dabbawala, A., Parmar, D.U., Bajaj, H.C., and Jasra, R.V., J. Mol. Catal. A: Chemical, 2008, vol. 282, nos. 1–2, pp. 99–106. https://doi.org/10.1016/j.molcata.2007.11.026

    Article  CAS  Google Scholar 

  62. Dabbawala, A.A., Parmar, J.N., Jasra, R.V., Bajaj, H.C., and Monflier, E., Catal. Commun., 2009, vol. 10, no. 14, pp. 1808–1812. https://doi.org/10.1016/j.catcom.2009.06.005

    Article  CAS  Google Scholar 

  63. Dabbawala, A.A., Bajaj, H.C., Bricout, H., and Monflier, E., Appl. Catal. A: General, 2012, vols. 413–414, pp. 273–279. https://doi.org/10.1016/j.apcata.2011.11.021

    Article  CAS  Google Scholar 

  64. Wu, D., Zhang, J., Wang, Y., Jiang, J., and Jin, Z., Appl. Organomet. Chem., 2012, vol. 26, no. 12, pp. 718–721. https://doi.org/10.1002/aoc.2916

    Article  CAS  Google Scholar 

  65. Wu, D., Wang, Y., Li, G., Jiang, J., and Jin, Z., Catal. Commun., 2014, vol. 44, no. 10, pp. 54–56. https://doi.org/10.1016/j.catcom.2013.06.029

    Article  CAS  Google Scholar 

  66. Roesle, P., Durr, C.J., Moller, Н.М., Cavallo, L., Caporaso, L., and Mecking, S., J. Am. Chem. Soc., 2012, vol. 134, no. 42, pp. 17696–17703. https://doi.org/10.1021/ja307411p

    Article  CAS  PubMed  Google Scholar 

  67. Zubiri, M.R.I., Clarke, M.L., Foster, D.F., Cole-Hamilton, D.J., Slawin, A.M.Z., and Woollins, J.D., J. Chem. Soc., Dalton Trans., 2001, no. 7, pp. 969–971. https://doi.org/10.1039/B101656N

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.G. Sokolov and V.P. Boyarskiy: development of the concept and structure of the review, combination of the collected material, and final manuscript preparation; V.V. Norin and E.A. Sidel’nikova: collection of materials concerning promotion of cobalt carbonyls with Lewis bases; A.V. Kameshkov and E.A. Skadkovskaya: processing of materials on the development of supported cobalt catalysts promoted with phosphine ligands as applied to modern indistry.

Corresponding author

Correspondence to B. G. Sokolov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 5, pp. 563–578, May, 2022 https://doi.org/10.31857/S0044461822050026

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, B.G., Norin, V.V., Sidel’nikova, E.A. et al. Cobalt Catalysts for Hydroformylation and Carboalkoxylation: History and Commercial Prospects. Russ J Appl Chem 95, 631–645 (2022). https://doi.org/10.1134/S1070427222050020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222050020

Keywords:

Navigation