Skip to main content
Log in

Simultaneous Investigation of Dopamine and Uric Acid Using Novel Electrochemical Sensor Based on Green Synthesized Silver Vanadate Nanoparticles

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A novel, highly sensitive, and precise electrochemical biosensor designed for the simultaneous determination of dopamine (DA) and uric acid (UA) via cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods by using silver vanadate nanoparticles (AgVO3 NPs) fabricated glassy carbon electrode (GCE). AgVO3 NPs were prepared by eco-friendly simple green route approach by using Samanea saman (rain tree) tree pod extract. The structural morphology and characterization of as-prepared AgVO3 NPs were examined using powder XRD, FT-IR, FESEM, elemental mapping, EDAX, and HR-TEM analysis. Using DPV DA, and UA were simultaneously determined at AgVO3 NPs modified GCE under optimal conditions. The biosensor’s low limits of detection for DA and UA were 0.019 and 0.012 µM, respectively. The developed sensor could be used as a platform for routine research into DA and UA because of its outstanding reproducibility and stability. The developed sensor was also employed for the analysis of DA and UA in serum and urine samples with excellent recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Scheme
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Devnani, H., Rashid, N., and Ingole, P.P., ChemistrySelect, 2019, vol. 4, p. 633. https://doi.org/10.1002/slct.201803233

    Article  CAS  Google Scholar 

  2. Wang, Z.H., Liu, J., Liang, Q., Wang, Y., and Luo, G., Analyst, 2002, vol. 127, p. 653. https://doi.org/10.1039/B201060G

    Article  CAS  PubMed  Google Scholar 

  3. Lin, M., RSC Adv., 2015, vol.5, p. 9848. https://doi.org/10.1039/C4RA14360D

    Article  CAS  Google Scholar 

  4. Cao, X.H., Zhang, L.X., Cai, W.P., and Li, Y.Q., Electrochem. Commun., 2010, vol. 12, p., 540. https://doi.org/10.1016/j.elecom.2010.01.038

  5. Thomas, T., Mascarenhas, R.J., Nethravathi, C.M., and Rajamathi Swamy, B.K., J. Electroanal. Chem., 2011, vol. 659 p. 113. https://doi.org/10.1016/j.jelechem.2011.05.011

    Article  CAS  Google Scholar 

  6. Lupu, S., Mucci, A., Pigani, L., Seeber, R., and Zanardi, C., Electroanalysis, An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2002, vol. 14, p. 519. https://doi.org/10.1002/1521-4109(200204)

  7. Du, J., Yue, R., Ren, F., Yao, Z., Jiang, F., Yang, P., and Du, Y., Biosens. Bioelectron., 2014, vol. 53, p. 220. https://doi.org/10.1016/j.bios.2013.09.064

    Article  CAS  PubMed  Google Scholar 

  8. Guan, J.F., Zou, J., Liu, Y.P., Jiang, X.Y., and Yu, J.G., Ecotoxicol. Environ. Saf., 2020, vol. 201, p. 110872. https://doi.org/10.1016/j.ecoenv.2020.110872

    Article  CAS  PubMed  Google Scholar 

  9. Fredj, Z., Ali, M.B., Abbas, M.N., and Dempsey, E., Anal. Methods, 2020, vol. 12, p. 3883. https://doi.org/10.1039/D0AY01183E

    Article  CAS  PubMed  Google Scholar 

  10. Liu, Y., Sun, X., Di, D., Quan, J., Zhang, J., and Yang, X., Clin. Chim. Acta, 2011, vol. 412, p. 2132. https://doi.org/10.1016/j.cca.2011.07.031

    Article  CAS  PubMed  Google Scholar 

  11. Maminski, M., Olejniczak, M., Chudy, M., Dybko, A., and Brzozka, Z., Anal. Chim. Acta, 2005, vol. 540, p. 153. https://doi.org/10.1016/j.aca.2004.09.011

    Article  CAS  Google Scholar 

  12. Makrlíková, A., Opekar, F., and Tůma, P., Electrophoresis, 2015, vol. 36, p. 1962. https://doi.org/10.1002/elps.201400613

    Article  CAS  PubMed  Google Scholar 

  13. Fanguy, J.C., and Henry, C.S., Electrophoresis, 2002, vol. 23, p. 767. https://doi.org/10.1002/1522-2683(200203)

    Article  CAS  PubMed  Google Scholar 

  14. Fang, X., Ren, H., Zhao, H., and Li, Z., Microchim. Acta., 2017, vol. 184, p. 415. https://doi.org/10.1007/s00604-016-2024-z

    Article  CAS  Google Scholar 

  15. Su, H., Sun, B., Chen, L., Xu, Z., Ai, S., Anal Methods., 2012, vol. 4, p. 3981. https://doi.org/10.1039/C2AY25794G

    Article  CAS  Google Scholar 

  16. Xue, Z., Feng, Y., Guo, H., Hu, C., Mahmoud idris Mohmed, A., Li, J., and Lu, X., RSC Adv., 2014, vol. 4, p. 5849. https://doi.org/10.1039/C3RA45677C

    Article  CAS  Google Scholar 

  17. Zahran, E.M., Prodromidis, M.I., Bhattacharyya, D., and Bachas, L.G., Anal. Bioanal. Chem., 2012, vol. 404, p. 1637. https://doi.org/10.1007/s00216-012-6291-1

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, J., and Ma, Z., RSC Adv., 2017, vol. 7, p. 2163. https://doi.org/10.1039/C6RA26352F

    Article  CAS  Google Scholar 

  19. Gao, L., Li, Z., and Liu, J., RSC Adv., 2017, vol. 7, p. 27515. https://doi.org/10.1039/C7RA03955G

    Article  CAS  Google Scholar 

  20. Song, J.M., Lin, Y.Z., Yao, H.B., Fan, F.J., Li, X.G., and Yu, S.H., ACS Nano, 2009, vol. 3, p. 653. https://doi.org/10.1021/nn800813s

    Article  CAS  PubMed  Google Scholar 

  21. Liang, S., Zhou, J., Pan, A., Li, Y., Chen, T., Tian, Z., and Ding, H., Mater. Lett. 2012, vol. 74, p. 176. https://doi.org/10.1016/j.matlet.2012.01.101

  22. Chen, T., Shao, M., Xu, H., Wen, C., and Lee, S.T., J. Colloid Interface Sci., 2012, vol. 366, p. 80. https://doi.org/10.1016/j.jcis.2011.09.075

    Article  CAS  PubMed  Google Scholar 

  23. Holtz, R.D., Souza Filho, A.G., Brocchi, M., Martins, D., Duran, N., and Alves, O.J., Nanotechnology, 2010, vol. 21, p. 185102. https://doi.org/10.1088/0957-4484/21/18/185102

    Article  CAS  PubMed  Google Scholar 

  24. De Oliveira, R.C., De Foggi, C.C., Teixeira, M.M., Da Silva, M.D.P., Assis, M., Francisco, E.M., Pimentel, B.N.A.D.S., Pereira, P.F.D.S., Vergani, C.E., and Machado, A.L., ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 11472. https://doi.org/10.1021/acsami.7b00920

    Article  CAS  PubMed  Google Scholar 

  25. Xu, J., Hu, C., Xi, Y., Wan, B., Zhang, C., and Zhang, Y., Solid State Sci., 2012, 14, 535. https://doi.org/10.1016/j.solidstatesciences.2012.01.013

  26. Ju, P., Fan, H., Zhang, B., Shang, K., Liu, T., Ai, S., and Zhang, D., Sep. Purif. Technol., 2013, vol. 109, p. 107. https://doi.org/10.1016/j.seppur.2013.01.057

    Article  CAS  Google Scholar 

  27. Sharma, T.S.K. and Hwa, K.Y., Inorg. Chem., 2021, vol. 60, p. 6585. https://doi.org/10.1021/acs.inorgchem.1c00389

    Article  CAS  PubMed  Google Scholar 

  28. Alorabi, A.Q., Hassan, M.S., Algethami, J.S., and Baghdadi, N.E., Sci. Progr., 2021, vol. 104, Article ID 00368504211050300. https://doi.org/10.1177/00368504211050300

  29. Qin, Y., Li, H., Lu, J., Yan, Y., Lu, Z., and Liu, X., Chinese J. Catal., 2018, vol. 39, p. 1470. https://doi.org/10.1016/S1872-2067(18)63111-0

    Article  CAS  Google Scholar 

  30. Ran, R., Meng, X., and Zhang, Z., Appl. Catal. (B), 2016, vol. 196, p. 1. https://doi.org/10.1016/j.apcatb.2016.05.012

  31. Zhao, W., Guo, Y., Wang, S., He, H., Sun, C., and Yang, S., Appl. Catal. (B), 2015, vol. 165, p. 335. https://doi.org/10.1039/C5TA00635J

    Article  CAS  Google Scholar 

  32. Zhang, S.W., Li, J.X., Wang, X.K., Huang, Y.S., Zeng, M.Y., and Xu, J.Z., J. Mater. Chem. (A), vol. 2015, p. 10119. https://doi.org/10.1039/C5TA00635J

  33. Bao, S.J., Bao, Q.L., Li, C.M., Chen, T.P., Sun, C.Q., Dong, Z.L., Gan, Y., and Zhang, J., Small, 2007, vol. 3, p. 1174. https://doi.org/10.1002/smll.200700032

    Article  CAS  PubMed  Google Scholar 

  34. Wu, C.Z., Zhu, H.O., Dai, J., Yan, W.S., Yang, J.L., Tian, Y.C., Wei, S.Q., and Xie, Y., Adv. Funct. Mater., 2010, Vol. 20, p. 3666. https://doi.org/10.1002/adfm.201001179

  35. Murugan, E., Poongan, A., and Dhamodharan, A., J. Mol. Liq., 2022, vol. 348, p. 118447. https://doi.org/10.1016/j.molliq.2021.118447

    Article  CAS  Google Scholar 

  36. Zhang, S. Z., Jiang, Y., Bai, H., and Yang, J., J. Phys. Chem. (C), 2020, vol. 124, p. 19467. https://doi.org/10.1021/acs.jpcc.0c05153

    Article  CAS  Google Scholar 

  37. Wang, Q., Zhou, X., Ji, S., Li, S., Gu, J., Shen, L., and Shi, W., J. Environ. Chem. Eng., 2021, vol. 9, p. 106498. https://doi.org/10.1016/j.jece.2021.106498

  38. Singh, A., Dutta, D.P., Ballal, A., Tyagi, A.K., and Fulekar, M.H., Mater. Res. Bull., 2014, Vol. 51, p. 447. https://doi.org/10.1016/j.materresbull.2014.01.001

  39. Xiang, Z., Wang, Y., Yang, Z., Zhang, D., and Heterojunctions, D., J. Alloys Compd., 2019, vol. 776, p. 266. https://doi.org/10.1016/j.jallcom.2018.10.287

    Article  CAS  Google Scholar 

  40. Sivakumar, V., Suresh, R., Giribabu, K., and Narayanan, V., Solid State Sci., 2015, vol. 39, p. 34. https://doi.org/10.1016/j.solidstatesciences.2014.10.016

    Article  CAS  Google Scholar 

  41. Kumar, Y., Sharma, A., and Shirage, P.M., New J. Chem., 2018, vol. 7, p. 55778. https://doi.org/10.1039/C7NJ04801G

    Article  Google Scholar 

  42. Esmaeili, E., Salavati-Niasari, M., Mohandes, F., Davar, F., and Seyghalkar, H., J. Chem. Eng., 2011, vol. 170, p. 278. https://doi.org/10.1016/j.cej.2011.03.010

    Article  CAS  Google Scholar 

  43. Kaur, A., Kansal, S.K., and Umar, A., Sep. Purif. Technol., 2020, vol. 251, p. 117271. https://doi.org/10.1016/j.seppur.2020.117271

    Article  CAS  Google Scholar 

  44. Holtz, R.D., Lima, B.A., Souza Filho, A.G., Brocchi, M., and Alves, O.L., Nanomedicine: Nanotechnology, Biology and Medicine, 2012, vol. 8, p. 935. https://doi.org/10.1016/j.nano.2011.11.012

    Article  CAS  PubMed  Google Scholar 

  45. Valsalakumar, V. C., and Vasudevan, S., Langmuir, 2023, vol. 39, no. 44, p. 15730. https://doi.org/10.1021/acs.langmuir.3c02303

    Article  CAS  PubMed  Google Scholar 

  46. Vernekar, P.R., Purohit, B., Shetti, N.P., and Chandra, P., Microchem. J., 2021, vol. 160, p. 105599. https://doi.org/10.1016/j.microc.2020.105599

    Article  CAS  Google Scholar 

  47. Samie, H.A. and Arvand, M., J. Alloys Compd., 2019, vol. 782, p. 824. https://doi.org/10.1016/j.jallcom.2018.12.253

    Article  CAS  Google Scholar 

  48. Shaikshavali, P., Reddy, T.M., Gopal, T.V., Venkataprasad, G., Kotakadi, V.S., Palakollu, V.N., and Karpoormath, R., Colloids Surf. (A), 2020, vol. 584, p. 124038. https://doi.org/10.1016/j.colsurfa.2019.124038

    Article  CAS  Google Scholar 

  49. Valsalakumar, V.C., Joseph, A.S., Piyus, J., and Vasudevan, S., ACS Appl. Nano Mater., 2023, vol. 6, p. 8382. https://doi.org/10.1021/acsanm.3c00659

    Article  CAS  Google Scholar 

  50. Tang, J., Zhang, L., Liu, Y., Zhou, J., Han, G., and Tang, W., Electroanalysis, 2014, vol. 26, p. 2057. https://doi.org/10.1002/elan.201400272

    Article  CAS  Google Scholar 

  51. Rafati, A.A., Afraz, A., Hajian, A., and Assari, P., Microchim. Acta, 2014, vol. 181, p. 1999-2008. https://doi.org/10.1007/s00604-014-1293-7

    Article  CAS  Google Scholar 

  52. Bukkitgar, S.D. and Shetti, N.P., ChemistrySelect, 2016, vol. 1, p. 771. https://doi.org/10.1002/slct.201600197

    Article  CAS  Google Scholar 

  53. Fredj, Z., Ali, M.B., Abbas, M.N., and Dempsey, E., Anal. Meth., 2020, vol. 12, p. 3883. https://doi.org/10.1039/D0AY01183E

    Article  CAS  Google Scholar 

  54. Jia, L., Zhou, Y., Jiang, Y., Zhang, A., Li, X., and Wang, C., 2016, vol. 685, p. 167. https://doi.org/10.1016/j.jallcom.2016.05.239

  55. Nosratzehi, F., Halakoei, H., Rostami, M., Sorouri, A., Adib, K., Rahimi-Nasrabadi, M., and Ehrlich, H., Diamond Relat. Mater., 2022, vol. 127, p. 109120. https://doi.org/10.1016/j.diamond.2022.109120

    Article  CAS  Google Scholar 

  56. Rukaya banu, Swamy, B.K., and Ebenso, E., Inorg. Chem. Commun., 2022, vol. 145, p. 110013. https://doi.org/10.1016/j.inoche.2022.110013

    Article  CAS  Google Scholar 

  57. Anuar, N.S., Basirun, W.J., Shalauddin, M., and Akhter, S., RSC Adv., 2020, vol. 10, p. 17336. https://doi.org/10.1039/C9RA11056A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pallavi, K.M., Mamatha, G.P., Nagaraju, G., and Soundarya, T.L., Inorg. Chem. Commun., 2023, vol. 158, p. 111427. https://doi.org/10.1016/j.inoche.2023.111427

    Article  CAS  Google Scholar 

  59. You, Y., Zou, J., Li, W.J., Chen, J., Jiang, X.Y., and Yu, J.G., Int. J. Biol. Macromol., 2022, vol. 195, p. 346. https://doi.org/10.1016/j.ijbiomac.2021.12.058

    Article  CAS  PubMed  Google Scholar 

  60. Camargo, L.P., da Silva Pelissari, M.R., Da Silva, P.R.C., Batagin-Neto, A., Medeiros, R.A., Dias, M.A., and Dall’Antonia, L.H., Molecules, 2022, vol. 27, p. 6410. https://doi.org/10.3390/molecules27196410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Muthu, D., Govindaraj, R., Manikandan, M., Ramasamy, P., Haldorai, Y., and Kumar, R.T.R., Mater. Chem. Phys., 2023, vol. 297, p. 127437. https://doi.org/10.1016/j.matchemphys.2023.127437

    Article  CAS  Google Scholar 

  62. Gao, X., Gui, R., Xu, K. Q., Guo, H., Jin, H., and Wang, Z. New J. Chem., 2018, vol. 42, p. 2018. https://doi.org/10.1039/C8NJ02904K

    Article  Google Scholar 

  63. Tang, T., Zhou, M., Lv, J., Cheng, H., Wang, H., Qin, D., and Liu, X., Colloids Surf. (B), 2022, vol. 216, p. 112538. https://doi.org/10.1016/j.colsurfb.2022.112538

    Article  CAS  Google Scholar 

  64. Hathoot, A.A., Hassan, K.M., Essa, W.A., and Azzem, M.A., Iran. Chem. Soc., 2017, vol. 14, p.1789. https://doi.org/10.1007/s13738-017-1119-8

  65. Li, S.N., You, Y., Liu, B., Jiang, X.Y., and Yu, J.G., Microchim. Acta, 2023, vol. 190, p. 439. https://doi.org/10.1007/s00604-023-06019-z

    Article  CAS  Google Scholar 

  66. Hu, W., Sun, D., and Ma, W., Electroanalysis An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2010, vol. 22, p. 584. https://doi.org/10.1002/elan.200900376

    Article  CAS  Google Scholar 

  67. Nemakal, M. and Sannegowda, L.K., Sens. Actuators A: Phys., 2021, vol. 324, p. 112690. https://doi.org/10.1016/j.sna.2021.112690

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge, (USIC) Davangere University, Shivagangothri, Davangere, and Siddaganga Institute of Technology (TUMKUR) for providing XRD and spectral data, SAIF IIT Bombay, for high-resolution transmission electron microscopic images, and the University of Hyderabad for scanning electron microscopic images, EDS spectrum and elemental mapping. The authors are also grateful to P. Shekharagouda for the graphical abstract visualization.

Funding

This work was supported by the Council for Scientific and Industrial Research (CSIR, New Delhi, India) within Senior Research fellowship [09/1207(0566)/2020-EMR-I].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Mamatha.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pallavi, K.M., Mamatha, G.P., Nagaraju, G. et al. Simultaneous Investigation of Dopamine and Uric Acid Using Novel Electrochemical Sensor Based on Green Synthesized Silver Vanadate Nanoparticles. Russ J Gen Chem 94, 406–418 (2024). https://doi.org/10.1134/S1070363224020166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363224020166

Keywords:

Navigation