Skip to main content
Log in

Breakdown Voltage in Argon, Nitrogen, and Sulfur Hexafluoride Gases As a Function of Temperature

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The maximum intensity of the electrostatic field used in the study of its influence on the properties of magnetoactive coordination compounds is limited by the breakdown phenomenon. The breakdown of the gas medium is developed, as a rule, in the region of location of the studied sample and results in its destruction. The determination of optimum intensities of the electrostatic field is very important for successful accomplishment. The breakdown voltage in argon, nitrogen, and sulfur hexafluoride is studied in a temperature range of 80–300 K. The theory of breakdown appearance in gases makes it possible to assume an increase in the breakdown voltage with a decrease in the temperature of the studied gas. The following data are obtained by measuring the breakdown voltage under atmospheric pressure in the gas media between the planar electrodes remote at 0.7 mm: for nitrogen with decreasing temperature from 300 to 80 K, the breakdown voltage averaged over several measurements increases from 2.8 kV (field intensity Е ≈ 40 kV/cm) to 5.6 kV (Е ≈ 80 kV/cm); for argon with decreasing temperature from 300 to 90 K, this value increases from 1.4 kV (20 kV/cm) to 2.2 kV (31 kV/cm); and for elegas in the temperature range from 300 to 210 K, the average breakdown voltage increases from 5 kV (71 kV/cm) to 7.9 kV (113 kV/cm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Aisin, R.R., Belov, A.S., Belova, S.A., et al., Russ. J. Coord. Chem., 2019, vol. 46, p. 290. https://doi.org/10.31857/S0132344X20120014

    Article  Google Scholar 

  2. Bousseksou, A., Molnar, G., Salmona, L., and Nicolazzia, W., Chem. Soc. Rev., 2011, vol. 40, p. 3313. https://doi.org/10.1039/C1CS15042A

    Article  CAS  PubMed  Google Scholar 

  3. Starikov, A.G., Starikova, A.A., Chegerev, M.G., and Minkin, V.I., Russ. J. Coord. Chem., 2019, vol. 45, p. 92. https://doi.org/10.1134/S0132344X19020087

    Article  Google Scholar 

  4. Lanfranc de Panthou, F., Belorizky, E., Calemczuk, R., et al., J. Am. Chem. Soc., 1995, vol. 117, p. 11247. https://doi.org/10.1021/ja00150a023

    Article  CAS  Google Scholar 

  5. Ovcharenko, V.I., Maryunina, K.Y., Fokin, S.V., et al., Russ. Chem. Bull., 2004, vol. 53, p. 2406. https://doi.org/10.1007/s11172-005-0136-4

    Article  CAS  Google Scholar 

  6. Romanenko, G.V., Fokin, S.V., Chubakova, E.T., et al., J. Struct. Chem., 2022, vol. 63, no. 1, p. 87.

    Article  CAS  Google Scholar 

  7. Bodnar, S.H., Caneschi, A., Dei, A., et al., Chem. Commun., 2001, p. 2150. https://doi.org/10.1039/B106192P

  8. Evangelio, E. and Ruiz-Molina, D., Eur. J. Inorg. Chem., 2005, no. 15, p. 2957.

  9. Lukov, V.V., Shcherbakov, I.N., Levchenkov, S.I., et al., Russ. J. Coord. Chem., 2019, vol. 45, p. 163. https://doi.org/10.1134/S0132344X1903006X

    Article  CAS  Google Scholar 

  10. Meshcheryakova, I.N., Trofimova, O.Y., Druzhkov, N.O., et al., Russ. J. Coord. Chem., 2021, vol. 47, p. 307. https://doi.org/10.31857/S0132344X21050042

    Article  CAS  Google Scholar 

  11. Minakova, O.V., Tumanov, S.V., Fedin, M.V., and Veber, S.L., Russ. J. Coord. Chem., 2020, vol. 46, p. 326. https://doi.org/10.31857/S0132344X20040040

    Article  CAS  Google Scholar 

  12. Skanavi, G.I., Fizika dielektrikov (oblast' sil’nykh polei) (Physics of Dielectrics (Strong Field Region)), Moscow: FIZMATLIT, 1958.

  13. Raizer, Yu.P., Fizika gazovogo razryada (Gas Discharge Physics), Moscow: Nauka, 1987

  14. Gokhberg, B.M., Elektrichestvo, 1947, no. 3, p. 15.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Borodulina or S. L. Veber.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

The authors congratulate Academician V.I. Ovcharenko on the occasion of his 70th jubilee

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodulina, A.V., Minakova, O.V. & Veber, S.L. Breakdown Voltage in Argon, Nitrogen, and Sulfur Hexafluoride Gases As a Function of Temperature. Russ J Coord Chem 48, 452–455 (2022). https://doi.org/10.1134/S1070328422070028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328422070028

Keywords:

Navigation