Skip to main content
Log in

In Silico Docking Studies, Synthesis, Characterization, and Antimicrobial Antimycobacterial Activity of Coumarinyl Oxadiazoles from Fatty Acids

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

This present study deals with the design and evaluation of novel coumarinyl oxadiazoles substituted fatty acids derivatives using synthetic approach and to screen for in vitro antimicrobial activity. A recent literature survey revealed that, coumarinyl oxadiazoles substituted fatty acids derivatives shown for their ability to improve biological activities The condensation of 2-oxo-2H-chromene-3-carbohydrazide with substituted fatty acids in the presence of phosphorus oxychloride yielded a variety of novel 5-N-alkyl-1,3,4-oxadiazole-2H-chromen-2-one derivatives. The structure of the newly synthesized compounds was validated by elemental analysis, IR, 1H NMR, and mass spectrum data. Further, analysis of the drug-likeness property is predicted through five parameters like Lipinski rule, Ghose, Egan, Vebers, and Muegge rules. As molcular docking is normally used for understanding drug-receptor interaction. The above-derived compounds were subjected to molcular docking studies (4MFI, 5E2C, 6FBV, and 6NNE). The antibacterial and anti-mycobacterial properties of these substances were investigated. Compounds 3-(5-dodecyl-1,3,4-oxadiazol-2-yl)-2H-chromen-2-one and 3-(5-hexadecyl-1,3,4-oxadiazol-2-yl)-2H-chromen-2-one demonstrated considerable antibacterial activity against several tested bacterial strains in antimicrobial tests. In comparison to standard, compound 3-(5-(heptadec-8-en-1-yl)-1,3,4-oxadiazol-2-yl)-2H-chromen-2-one demonstrated excellent antitubercular action. This hypothesis provides a possible explanation of the enhanced biological activity of the derived compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Pelkonen, O., Raunio, H., Rautio, A., Pasanen, M., and Lang, M., 1997. Wiley.

  2. Kontogiorgis, C.A., Savvoglou, K., and HadjipavlouLitina, D.J., J. Enz. Inhib. Med. Chem., 2006, vol. 21, pp. 21–29. https://doi.org/10.1080/14756360500323022

    Article  CAS  Google Scholar 

  3. Kamal, A., Adil, S.F., Tamboli, J.R., Siddardha, B., and Murthy, U.S.N., Lett. Drug Des. Dis., 2009, vol. 6, pp. 201­–209. https://doi.org/10.2174/157018009787847855

    Article  CAS  Google Scholar 

  4. Vilar, S., Quezada, E., Santana, L., Uriarte, E., Yánez, M., Fraiz, N., Alcaide, C., Cano, E., and Orallo, F., BMCL, 2006, vol. 6, pp. 257­261. https://doi.org/10.1016/j.bmcl.2005.10.013

    Article  CAS  Google Scholar 

  5. Yeh, J.Y., Coumar, M.S., Horng, J.T., Shiao, H.Y., Kuo, F.M., Lee, H.L., Chen, I.C., Chang, C.W., Tang, W.F., Tseng, S.N., and Chen, C.J., JMC, 2010, vol. 53, pp. 1519–1533. https://doi.org/10.1021/jm901570x

    Article  CAS  Google Scholar 

  6. Cuzzocrea, S., Mazzon, E., Bevilaqua, C., Costantino, G., Britti, D., Mazzullo, G., De Sarro, A., and Caputi, A.P., British J. Pharmaco, 2000, vol. 131, pp. 1399–1407. https://doi.org/10.1038/sj.bjp.0703695

    Article  CAS  Google Scholar 

  7. Kontogiorgis, C.A. and Hadjipavlou-Litina, D.J., JMC, 2005, vol. 48, pp. 6400–6408. https://doi.org/10.1021/jm0580149

    Article  CAS  Google Scholar 

  8. Fahy, E., Subramaniam, S., Murphy, R.C., Nishijima, M., Raetz, C.R., Shimizu, T., Spener, F., van Meer, G., Wakelam, M.J., and Dennis, E.A., J. Lipid. Res., 2009, vol. 50, pp. S9–S14. https://doi.org/10.1194/jlr.R800095-JLR200

  9. Subramaniam, S., Fahy, E., Gupta, S., Sud, M., Byrnes, R.W., Cotter, D., Dinasarapu, A.R., and Maurya, M.R., Chem. Rev., 2011, vol. 111, pp. 6452–6490. https://doi.org/10.1021/cr200295k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Omar, F.A., Mahfouz, N.M., and Rahman, M.A., EJMC, 1996, vol. 31, pp. 819–825. https://doi.org/10.1016/0223-5234(96)83976-6

    Article  CAS  Google Scholar 

  11. Palaska, E., Şahin, G., Kelicen, P., Durlu, N.T., and Altinok, G., Il Farmaco, 2002, vol. 57, pp. 101­–107. https://doi.org/10.1016/s0014-827x(01)01176-4

    Article  CAS  PubMed  Google Scholar 

  12. Ramalingam, T. and Sattur, P.B., Eur. J. Med. Chem., 1990, vol. 25, pp. 541–544. https://doi.org/10.1016/0223-5234(90)90150-2

    Article  CAS  Google Scholar 

  13. Raman, K., Singh, H.K., Salzman, S.K., and Parmar, S.S., J. Pharm. Sci., 1993, vol. 82, pp. 167–169. https://doi.org/10.1002/jps.2600820210

    Article  CAS  PubMed  Google Scholar 

  14. Girges, M.M., Arzneimittel-Forschung., 1994, vol. 44, pp. 490–495.

    CAS  PubMed  Google Scholar 

  15. Husain, M.I., Kumar, A., and Srivastava, R.C., Curr. Sci., 1986, vol. 55, pp. 644–646.

    CAS  Google Scholar 

  16. Harfenist, M., Heuser, D.J., Joyner, C.T., Batchelor, J.F., and White, H.L., JMC, 1996. vol. 39, pp. 1857–1863. https://doi.org/10.1021/JM950595M

    Article  CAS  Google Scholar 

  17. Rai, K.L. and Linganna, N., Il Farmaco, 2000, vol. 55, pp. 389–392. https://doi.org/10.1016/s0014-827x(00)00056-2

    Article  CAS  PubMed  Google Scholar 

  18. Giri, S., Singh, H., and Yadav, L.D.S., Agr. Bio. Chem., 1976, vol. 40, pp. 17–21. https://doi.org/10.1271/bbb1961.40.17

    Article  CAS  Google Scholar 

  19. Mir, I., Siddiqui, M.T., and Comrie, A.M., J. Chem. Soci. Org., 1971, pp. 2798–2799. https://doi.org/10.1039/J39710002798

  20. Misra, H.K., Arch. der Pharmazie., 1983, vol. 316, pp. 487–493. https://doi.org/10.1002/ardp.19833160603

    Article  CAS  Google Scholar 

  21. Şahin, G., Palaska, E., Ekizoğlu, M., and Özalp, M., Il Farmaco, 2002, vol. 57, pp. 539–542. https://doi.org/10.1016/S0014-827X(02)01245-4

    Article  PubMed  Google Scholar 

  22. Singh, H. and Yadav, L.D.S., Agr. Bio. Chem., 1976, vol. 40, pp. 759–764. https://doi.org/10.1271/BBB1961.40.759

    Article  CAS  Google Scholar 

  23. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J., J. Comp. Chem., 2009, vol. 30, pp. 2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  Google Scholar 

  24. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., Protein Data Bank Nucl. Acid. Res., 2000, vol. 28, pp. 235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  Google Scholar 

  25. Banks, J.L., Beard, H.S., Cao, Y., Cho, A.E., Damm, W., Farid, R., Felts, A.K., Halgren, T.A., Mainz, D.T., Maple, J.R., and Murphy, R., J. Comp. Chem., 2005, vol. 26, pp. 1752–1780. https://doi.org/10.1002/jcc.20292

    Article  CAS  Google Scholar 

  26. Indian Pharmacopoeia, vol. 1 (A–O) and (P–Z), Govt. of India, Controller of Publications, 1996.

  27. Franzblau, S.G., Witzig, R.S., McLaughlin, J.C., Torres, P., Madico, G., Hernandez, A., Degnan, M.T., Cook, M.B., Quenzer, V.K., Ferguson, R.M., and Gilman, R.H., J. Clin. Microb., 1998, vol. 36, pp. 362­–366. https://doi.org/10.1128/JCM.36.2.362-366.1998

    Article  CAS  Google Scholar 

  28. Carvalho, S.A., da Silva, E.F., de Souza, M.V., Lourenço, M.C., and Vicente, F.R., BMCL, 2008, vol. 18, pp. 538–541. https://doi.org/10.1016/j.bmcl.2007.11.091

    Article  CAS  Google Scholar 

  29. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug Del. Rev., 1997, vol. 23, pp. 3–25. https://doi.org/10.1016/s0169-409x(00)00129-0

    Article  CAS  Google Scholar 

  30. Lipinski, C.A., Drug Dis. Today: Techn., 2004, vol. 1, pp. 337­–341. https://doi.org/10.1016/j.ddtec.2004.11.007

    Article  CAS  Google Scholar 

  31. Uetrecht, J., Chem. Res. Toxico, 2008, vol. 21, pp. 84–92. https://doi.org/10.1021/tx700186p

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are appreciative to Creative Educational Society’s College of Pharmacy in Kurnool, Andhra Pradesh, India, for providing laboratory facilities in a timely manner, allowing them to successfully complete this research project. The authors would like to express their gratitude to SRM University in Chennai, Tamil Nadu, for their assistance in recording the 1H NMR and mass spectra.

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

Authors BNS, NYS, and BSK designed the experiments. Authors BNS and BSK synthesized the samples and carried out their electrochemical study. Authors BSK and KI carried out studies using Raman and NMR spectroscopy. Authors BNS, KI participated in data processing. Authors BNS, NYS, BSK, and KI made theoretical calculations. Authors BNS, NYS, BSK, and KI contributed to manuscript preparation. All authors participated in the discussions.

Corresponding author

Correspondence to B. Naga Sudha.

Ethics declarations

The data that support the findings of this study are available from the corresponding author upon reasonable request. This article does not contain any studies involving animals or human participants performed by any of the authors. Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudha, B.N., Subbaiah, N.Y., Kumar, B.S. et al. In Silico Docking Studies, Synthesis, Characterization, and Antimicrobial Antimycobacterial Activity of Coumarinyl Oxadiazoles from Fatty Acids. Russ J Bioorg Chem 49, 1389–1397 (2023). https://doi.org/10.1134/S1068162023060195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023060195

Keywords:

Navigation