Skip to main content
Log in

Synthesis, Antioxidant, and Antibacterial Activities of Two Novel Series of 3,5-Disubstituted Isoxazole Ether-Linked Isoxazolines and 3,5-Disubstituted Pyrazole Ether-Linked Isoxazolines Mediated by Chloramine-T

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Two short novel series of five membered heterocyclic 3,5-disubstituted–Isoxazole ether-linked Isoxazoline derivatives (Xaf) and 3,5-disubstituted-Pyrazole ether-linked Isoxazoline derivatives (XIaf) were synthesized via 1,3-dipolar cycloaddition reaction of Isoxazole ether-linked allyloxymethyl (VI) and pyrazole ether-linked allyloxymethyl (VII) with aromatic aldoximes (VIIIaf) which undergo oxidative dehydrogenation with chloramine-T (IX) to give 3,5-disubstituted isoxazole ether-linked isoxazoline derivatives (Xaf) and 3,5-disubstituted pyrazole ether-linked Isoxazoline derivatives (XIaf) in good yield. The newly synthesized compounds were screened for anti-oxidant and anti-microbial activities. 3,5‑Disubstituted isoxazole ether-linked isoxazoline derivatives (Xcd) and 3,5-disubstituted Pyrazole ether-linked isoxazoline derivatives (XIcd) exhibited antioxidant activity at 10 µg/mL, as well as anti-microbial activity at 100 µg/mL compared with standard vitamin C and ciprofloxacin, respectively. Structures of newly synthesized compounds were established on the basis of their elemental analysis and spectral IR, 1H NMR, and 13C NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. George, R.F., Fouad, M.A., and Gomaa, I.E., Eur. J. Med. Chem., 2016, vol. 112, pp. 48–59. https://doi.org/10.1016/j.ejmech.2016.01.048

    Article  CAS  PubMed  Google Scholar 

  2. Fioravanti, R., Bolasco, A., Manna, F., Rossi, F., Orallo, F., Ortuso, F., Alcaro, S., and Cirilli, R., Eur. J. Med. Chem., 2010, vol. 45, pp. 6135–6138. https://doi.org/10.1016/j.ejmech.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  3. Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y.N., Al-aizari, F.A., and Ansar, M., Molecules, 2018, vol. 23, article no. 134. https://doi.org/10.3390/molecules23010134

    Article  CAS  PubMed Central  Google Scholar 

  4. Liu, J.J., Zhao, M.Y., Zhang, X., Zhao, X., and Zhu, H., Med. Chem., 2013, vol. 13, pp. 1957–1966. https://doi.org/10.2174/13895575113139990078

    Article  CAS  Google Scholar 

  5. Zhou, X., Hohman, A.E., and Hsu, W.H., J. Vet. Pharmacol. Therap., 2021, vol. 45, pp. 1–15. https://doi.org/10.1111/jvp.12959

    Article  CAS  Google Scholar 

  6. Kumar, G. and Shankar, R., Chem. Med. Chem., 2021, vol. 16, pp. 430–447. https://doi.org/10.1002/cmdc.202000575

    Article  CAS  PubMed  Google Scholar 

  7. Walunj, Y., Mhaske, P., and Kulkarni, P., Mini-Rev. Org. Chem., 2021, vol. 18, pp. 55–77. https://doi.org/10.2174/1570193X17999200511131621

    Article  CAS  Google Scholar 

  8. Shin, K.D., Lee, M.Y., Shin, D.S., Lee, S., Son, H.K., Sukhoon, K., Paik, Y.K., Kwon, B.M., and Han, D.C., J. Biol. Chem., 2005, vol. 50, pp. 41439–41448. https://doi.org/10.1074/jbc.M507209200

    Article  CAS  Google Scholar 

  9. Sperry, J.B. and Wright, D.I., Curr. Opin. Drug. Dis. Dev., 2005, vol. 8, pp. 723–740. https://doi.org/10.1002/chin.200615242

    Article  CAS  Google Scholar 

  10. Lawrence, S.L., Roth, V., Slinger, R., Toye, B., Gaboury, I., and Lemyre, B., BMC Pediatrics, 2005, vol. 5 (49), pp. 1–8. https://doi.org/10.1186/1471-2431-5-49

    Article  Google Scholar 

  11. Rozman, B., Praprotnik, S., Logar, D., Tomšič, M., Hojnik, M., Kos-Golja, M., Accetto, R., and Dolenc, P., Ann. Rheum. Dis., 2002, vol. 61, pp. 567–569. https://doi.org/10.1136/ard.61.6.567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rahimizadeh, M., Pordel, M., Bakavoli, M., Rezaeian, S., and Sadeghian, A., World. J. Microbiol. Biotechnol., 2010, vol. 26, pp. 317–321. https://doi.org/10.1007/s11274-009-0178-0

    Article  CAS  Google Scholar 

  13. Padmaja, A., Rajasekhar, C., Muralikrishna, A., and Padmavathi, V., Eur. J. Med. Chem., 2011, vol. 46, pp. 5034–5038. https://doi.org/10.1016/j.ejmech.2011.08.010

    Article  CAS  PubMed  Google Scholar 

  14. Kumar, K.A. and Jayaroopa, P., Inter. J. Pharm. Tech. Res., 2013, vol. 4, pp. 1473–1486. https://www.sphinxsai. com/2013/OD/PharmOD13/pdfphamOD2013/PT= 05(1473-1486)OD13.pdf

    Google Scholar 

  15. Kumari, P., Mishra, V.S., Narayana, C., Khanna, A., Chakrabarty, A., and Sagar, R., Sci. Rep., 2020, vol. 10, p. 6660. https://doi.org/10.1038/s41598-020-63377-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ansari, A., Ali, A., Asif, M., and Shamsuzzaman, New J. Chem., 2017, vol. 41, pp. 16–41. https://doi.org/10.1039/C6NJ03181A

    Article  CAS  Google Scholar 

  17. LeBlanc, R., Dickson, J., Brown, T., Stewart, M., Pati, H.N., VanDerveer, D., Arman, H., Harris, J., Pennington, W., Holt, H.L., Jr., and Lee, M., Bioorg. Med. Chem., 2005, vol. 13, pp. 6025–6034. https://doi.org/10.1016/j.bmc.2005.06.028

    Article  CAS  PubMed  Google Scholar 

  18. Zaninetti, R., Cortese, S.V., Aprile, S., Massarotti, A., Canonico, P.L., Sorba, G., Grosa, A., Genazzani, A.A., and Pirali, T., ChemMedChem, 2013, vol. 4, pp. 633–643. https://doi.org/10.1002/cmdc.201200561

    Article  CAS  Google Scholar 

  19. Finkelstein, B.L. and Strock, C.J., Pest. Sci., 1997, vol. 50, pp. 324–328. https://doi.org/10.1002/(SICI)1096-9063(199708)50:4<324::AID-PS596>3.0.CO;2-D

    Article  CAS  Google Scholar 

  20. Song, H., Liu, Y., Xiong, L., Li, Y., Yang, N., and Wang, Q., J. Agric. Food. Chem., 2012, vol. 60, pp. 1470–1479. https://doi.org/10.1021/jf204778v

    Article  CAS  PubMed  Google Scholar 

  21. Fu, C., Pei, J., Ning, Y., Liu, M., Shan, P., Liu, J., Li, Y., Hu, F., Zhu, Y., Yang, H., and Zou, X., Pest. Manag. Sci., 2014, vol. 70, pp. 1207–1214. https://doi.org/10.1002/ps.3672

    Article  CAS  PubMed  Google Scholar 

  22. Fustero, S., Sánchez-Roselló, M., Barrio, P., and Simón-Fuentes, A., Chem. Rev., 2011, vol. 111, pp. 6984–7034. https://doi.org/10.1021/cr2000459

    Article  CAS  PubMed  Google Scholar 

  23. Ansari, A., Ali, A., Asif, M., and Shamsuzzaman, New J. Chem., 2017, vol. 41, pp. 16–41. https://doi.org/10.1039/C6NJ03181A

    Article  CAS  Google Scholar 

  24. Ito, N. and Saijo, S., Jpn Kokai, 1975, 7595272; Chem. Abstr., 1976, vol. 84, 105567.

    Google Scholar 

  25. Carr, J.B., Durham, H.G., and Hass, D.K., J. Med. Chem., 1977, vol. 20, pp. 934–939. https://doi.org/10.1021/jm00217a014

    Article  CAS  PubMed  Google Scholar 

  26. Saber, A., Driowya, M., Alaoui, S., Marzag, H., Demange, L., Alvarez, E., Benhida, R., and Bougrin. K., Chem. Hetr. Com., 2016, vol. 52, pp. 31–40. https://doi.org/10.1007/s10593-016-1828-4

    Article  CAS  Google Scholar 

  27. Eckhard, I.F., Lehtonen, K., Staub, T., and Summers, L.A., Aust. J. Chem., 1973, vol. 26, pp. 2705–2710. https://doi.org/10.1071/CH9732705

    Article  CAS  Google Scholar 

  28. Das, D. and Chanda, K., RSC. Adv., 2021, vol. 11, pp. 32680–32705. https://doi.org/10.1039/D1RA04624A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Puel, J.L., Pujol, R., Ladrech, R., and Eybalin, M., Neuroscience, 1991, vol. 45, pp. 63–72. https://doi.org/10.1016/0306-4522(91)90103-U

    Article  CAS  PubMed  Google Scholar 

  30. Alshamari, A., Al-Qudah, M., Hamadeh, F., Al-Momani, L., and Abu-Orabi, S., Molecules, 2020, vol. 25, article no. 4271. https://doi.org/10.3390/molecules25184271

    Article  CAS  PubMed Central  Google Scholar 

  31. Gupta, R.A. and Kaskhedikar, S.G., Med. Chem. Res., 2013, vol. 22, pp. 3863–3880. https://doi.org/10.1007/s00044-012-0385-3

    Article  CAS  Google Scholar 

  32. Yang, Z., Li, P., and Gan, X., Molecules, 2018, vol. 23 (7), article no. 1798. https://doi.org/10.3390/molecules23071798

    Article  CAS  PubMed Central  Google Scholar 

  33. Das, P., Boone, S., Mitra, D., Turner, L., Tandon, R., Raucher, D., Hamme II, A.T., RSC Adv., 2020, vol. 10, pp. 30223–30237. https://doi.org/10.1039/D0RA06148D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krompiec, S., Buiak, P., and Szczepankiewicz, W., Tetrahedron Lett., 2008, vol. 49 (42), pp. 6071–6074. https://doi.org/10.1016/j.tetlet.2008.07.176

    Article  CAS  Google Scholar 

  35. Patil, P.O. and Bari, S.B., J. Chem. Sci. 2013, vol. 2013, pp. 1–8. https://doi.org/10.1155/2013/637205

    Article  CAS  Google Scholar 

  36. Dannhardt, G., Kiefer, W., Krämer, G., Maehrlein, S., Nowe, U., and Fiebich, B., Eur. J. Med. Chem., 2000, vol. 35, pp. 499–510. https://doi.org/10.1016/S0223-5234(00)00150-1

    Article  CAS  PubMed  Google Scholar 

  37. Madhavilatha, B., Fatima, N., Sabitha, G., Subba Reddy, B.V., Yadav, J.S., Bhattacharjee, D., and Jain, N., Med. Chem. Res., 2017, vol. 26, pp. 1753–1763. https://doi.org/10.1007/s00044-017-1884-z

    Article  CAS  Google Scholar 

  38. Jayashankara, B. and Lokanatha Rai, K.M., ARKIVOC, 2008, vol. 11, pp. 75–85. https://doi.org/10.3998/ark.5550190.0009.b07

    Article  Google Scholar 

  39. Ibrahim, S., Ghabi, A., Amiri, N., Mtiraoui, H., Hajji, M., Bel-Hadj-Tahar, R., and Msaddek, M., Monatsh. Chem., 2021, vol. 152, pp. 523–535. https://doi.org/10.1007/s00706-021-02764-0

    Article  CAS  Google Scholar 

  40. Ebraheem, M.A., Lokanatha Raia, K.M., Kudva. N.N.U., and Bahjat, A.S., Tetrahedron Lett., 2010, vol. 51, pp. 3486–3492. https://doi.org/10.1016/j.tetlet.2010.04.003

    Article  CAS  Google Scholar 

  41. Evans, D.A., Gage, J.R., and Leighton, J.L., J. Am. Chem. Soc., 1992, vol. 114, pp. 9434–9453. https://doi.org/10.1021/ja00050a024

    Article  CAS  Google Scholar 

  42. Vijay Kumar, H. and Naik, N., Eur. J. Med. Chem., 2010, vol. 45 (1), pp. 2–10. https://doi.org/10.1016/j.ejmech.2009.09.016

    Article  CAS  PubMed  Google Scholar 

  43. Blois, M.S., Nature, 1957, vol. 181, pp. 1199–1200. https://doi.org/10.1038/1811199a0

    Article  Google Scholar 

  44. Ruberto, G., Baratta, M.T., Deans, S.G., and Dorman, H., J. Planta Med., 2000, vol. 66 (8), pp. 687–693. https://doi.org/10.1055/S-2000-9773

    Article  CAS  Google Scholar 

  45. Andrews, J.M., J. Antimicrob. Chemother., 2008, vol. 62, pp. 256–278. https://doi.org/10.1093/jac/dkn194

    Article  CAS  PubMed  Google Scholar 

  46. Szatylowicz, H., Stasyuk, O.A., Fonseca Guerra, C., and Krygowski, T.M., Crystals, 2016, vol. 6 (3), article no. 29. https://doi.org/10.3390/cryst6030029

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Author expresses his sincere gratitude to the University of Mysore, Mysore, for providing the laboratory facilities to carry out this work.

Funding

This work was funded by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University through Award Number 2021/01/18335.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. M. Saleh.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving human participants performed by any of the authors and does not contain any studies involving animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, E.A., Kotian, S.Y., Al Dawsari, A.M. et al. Synthesis, Antioxidant, and Antibacterial Activities of Two Novel Series of 3,5-Disubstituted Isoxazole Ether-Linked Isoxazolines and 3,5-Disubstituted Pyrazole Ether-Linked Isoxazolines Mediated by Chloramine-T. Russ J Bioorg Chem 48, 1043–1052 (2022). https://doi.org/10.1134/S1068162022050181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022050181

Keywords:

Navigation