Skip to main content
Log in

Soil Organic Carbon Fractions in Cultivated Calcareous Soils

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soils play an important role in the balance of carbon on the global scale. The study of the carbon cycle in Calcareous soils has received less attention, while Calcareous soils cover a third of the world’s soils and most croplands of Iran. The aim of this study was to investigate soil organic carbon fractions and the relationship of soil organic carbon (SOC) with soil properties in 30 wheat farms of Calcisols of Alborz, Iran. To study the effects of soil geochemical properties, the data were subjected to cluster analysis to select samples with similar texture and low salinity. We applied a densimetric method using sodium iodide (NaI) to isolate light fraction (LF < 1.6 g/cm3), occluded fraction (OF < 1.8 g/cm3), and mineral-associated organic matter (MAOM > 1.8 g/cm3) of selected soils. Results showed that SOC decreased up to 61% throughout the soil profile. Mineral-associated organic matter had the highest proportion (more than 75%) of SOC in agricultural soils. The mean value of C/N reduced in mineral-associated organic matter compared to that of bulk soil, which indicates nitrogen concentration in this fraction. The study of soil properties suggested that calcium carbonate equivalent (CCE) could explain SOC content in calcareous soils, while extracted metals (iron, magnesium, and calcium) had a significant relationship with the organic carbon content of heavy fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Muffle Furnace Method.

  2. Inductively Coupled Plasma Optical Emission spectroscopy.

  3. Fourier Transform Infrared Spectrophotometry.

  4. Isoelectric points.

REFERENCES

  1. Z. Artem’eva and L. Travnikova, “Transformation of organic matter and clay minerals in cultivated gray forest soils,” Eurasian Soil Sci. 39, 84–94 (2006).

    Article  Google Scholar 

  2. J. Balesdent, C. Chenu, and M. Balabane, “Relationship of soil organic matter dynamics to physical protection and tillage,” Soil Tillage Res. 53 (3–4), 215–230 (2000).

    Article  Google Scholar 

  3. I. Basile-Doelsch, R. Amundson, W. Stone, D. Borschneck, J.-Y. Bottero, S. Moustier, F. Masin, and F. Colin, “Mineral control of carbon pools in a volcanic soil horizon,” Geoderma 137 (3–4), 477–489 (2007).

    Article  CAS  Google Scholar 

  4. I. Basile-Doelsch, T. Brun, D. Borschneck, A. Masion, C. Marol, and J. Balesdent, “Effect of landuse on organic matter stabilized in organomineral complexes: a study combining density fractionation, mineralogy and δ13C,” Geoderma 151 (3–4), 77–86 (2009).

    Article  CAS  Google Scholar 

  5. C. A. Bower, R. Reitemeier, and M. Fireman, “Exchangeable cation analysis of saline and alkali soils,” Soil Sci. 73 (4), 251–262 (1952).

    Article  CAS  Google Scholar 

  6. E. S. Button, J. Pett-Ridge, D. V. Murphy, Y. Kuzyakov, D. R. Chadwick, and D. L. Jones, “Deep-C storage: biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils,” Soil Biol. Biochem. 170, 108697 (2022).

    Article  CAS  Google Scholar 

  7. T. Chao and L. Zhou, “Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments,” Soil Sci. Soc. Am. J. 47 (2), 225–232 (1983).

    Article  CAS  Google Scholar 

  8. D. Courtier-Murias, A. J. Simpson, C. Marzadori, G. Baldoni, C. Ciavatta, J. M. Fernández, E. G. López-de-Sá, and C. Plaza, “Unraveling the long-term stabilization mechanisms of organic materials in soils by physical fractionation and NMR spectroscopy,” Agric. Ecosyst. Environ. 171, 9–18 (2013).

    Article  CAS  Google Scholar 

  9. S. E. Crow, C. W. Swanston, K. Lajtha, J. R. Brooks, and H. Keirstead, “Density fractionation of forest soils: methodological questions and interpretation of incubation results and turnover time in an ecosystem context,” Biogeochemistry 85, 69–90 (2007).

    Article  Google Scholar 

  10. G. Drouineau, “Dosage rapide du calcaire actif du sol: nouvelles données sur la separation et la nature des fractions calcaires,” Ann. Agron. 12, 441–450 (1942).

    CAS  Google Scholar 

  11. FAO, Standard Operating Procedure for Soil Calcium Carbonate Equivalent. Volumetric Calcimeter Method (FAO, Rome, 2020), p. 17.

    Google Scholar 

  12. Fisher, Measurements of Adsorbed Cations in Soils Employing Radioactive Isotope Equilibration Methods (Univ. of Missouri, 1963).

  13. E. Garrido and F. Matus, “Are organo-mineral complexes and allophane content determinant factors for the carbon level in Chilean volcanic soils?,” Catena 92, 106–112 (2012).

    Article  CAS  Google Scholar 

  14. A. Golchin, J. Baldock, P. Clarke, T. Higashi, and J. Oades, “The effects of vegetation and burning on the chemical composition of soil organic matter of a volcanic ash soil as shown by 13C NMR spectroscopy. II. Density fractions,” Geoderma 76 (3–4), 175–192 (1997).

    Article  CAS  Google Scholar 

  15. A. Golchin, J. Oades, J. Skjemstad, and P. Clarke, “Soil structure and carbon cycling,” Soil Res. 32 (5), 1043–1068 (1994).

    Article  Google Scholar 

  16. I. Hilke, General Principles for the Quantification of Total Organic Carbon (TOC) in Environmental Solid and Liquid Samples (2015).

  17. J. Houghton, “Global warming reports on progress,” Physics 68 (6), 1340–1403 (2005).

    Google Scholar 

  18. IUSS Working Group, World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (FAO, Rome, 2014).

    Google Scholar 

  19. J. Jin and A. R. Zimmerman, “Abiotic interactions of natural dissolved organic matter and carbonate aquifer rock,” Appl. Geochem. 25 (3), 472–484 (2010).

    Article  CAS  Google Scholar 

  20. E. Jones and B. Singh, “Organo-mineral interactions in contrasting soils under natural vegetation,” Front. Environ. Sci. 2, 2 (2014).

    Article  Google Scholar 

  21. M. Kleber, K. Eusterhues, M. Keiluweit, C. Mikutta, R. Mikutta, and P. S. Nico, “Mineral–organic associations: formation, properties, and relevance in soil environments,” Adv. Agron. 130, 1–140 (2015).

    Article  Google Scholar 

  22. M. Kleber, R. Mikutta, M. Torn, and R. Jahn, “Poorly crystalline mineral phases protect organic matter in acid subsoil horizons,” Eur. J. Soil Sci. 56 (6), 717–725 (2005).

    Article  CAS  Google Scholar 

  23. I. Kögel-Knabner, G. Guggenberger, M. Kleber, E. Kandeler, K. Kalbitz, S. Scheu, K. Eusterhues, and P. Leinweber, “Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry,” J. Plant Nutr. Soil Sci. 171 (1), 61–82 (2008).

    Article  Google Scholar 

  24. M. Kosmulski, “pH-dependent surface charging and points of zero charge. IV. Update and new approach,” J. Colloid Interface Sci. 337 (2), 439–448 (2009).

    Article  CAS  Google Scholar 

  25. L. Lopez-Sangil and P. Rovira, “Sequential chemical extractions of the mineral-associated soil organic matter: An integrated approach for the fractionation of organo-mineral complexes,” Soil Biol. Biochem. 62, 57–67 (2013).

    Article  CAS  Google Scholar 

  26. K. Lorenz and R. Lal, Carbon Sequestration in Agricultural Ecosystems (Springer, 2018).

    Book  Google Scholar 

  27. W. Machado, J. C. Franchini, M. de Fátima Guimarães, and J. Tavares Filho, “Spectroscopic characterization of humic and fulvic acids in soil aggregates, Brazil,” Heliyon 6 (6), (2020).

  28. H. Marschner, Marschner’s Mineral Nutrition of Higher Plants (Academic Press, 2011).

    Google Scholar 

  29. F. Matus, X. Amigo, and S. M. Kristiansen, “Aluminium stabilization controls organic carbon levels in Chilean volcanic soils,” Geoderma 132 (1–2), 158–168 (2006).

    Article  CAS  Google Scholar 

  30. J. McKeague, “An evaluation of 0.1 M pyrophosphate and pyrophosphate-dithionite in comparison with oxalate as extractants of the accumulation products in podzols and some other soils,” Can. J. Soil Sci. 47 (2), 95–99 (1967).

    Article  CAS  Google Scholar 

  31. O. Mehra and M. Jackson, in Clays Clay Miner. (Elsevier, 2013), pp. 317–327.

    Google Scholar 

  32. K. J. Minick, M. C. Fisk, and P. M. Groffman, “Soil Ca alters processes contributing to C and N retention in the Oa/A horizon of a northern hardwood forest,” Biogeochemistry 132, 343–357 (2017).

    Article  CAS  Google Scholar 

  33. U. Mishra, D. A. Ussiri, and R. Lal, “Tillage effects on soil organic carbon storage and dynamics in Corn Belt of Ohio USA,” Soil Tillage Res. 107 (2), 88–96 (2010).

    Article  Google Scholar 

  34. A. Moghimi and J. Hamdan, “Characteristics and suitability of some arid soils in Southeastern Iran for wheat cultivation,” Afr. J. Agric. Res. 9 (9), 859–865 (2014).

    Article  Google Scholar 

  35. D. W. Nelson and L. E. Sommers, “Total carbon, organic carbon, and organic matter,” in Methods of Soil Analysis, Part 3: Chemical Methods (1996), vol. 5, pp. 961–1010.

  36. C. J. Newcomb, N. P. Qafoku, J. W. Grate, V. L. Bailey, and J. J. De Yoreo, “Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding,” Nat. Commun. 8 (1), 396 (2017).

    Article  CAS  Google Scholar 

  37. P. North, “Towards an absolute measurement of soil structural stability using ultrasound,” J. Soil Sci. 27 (4), 451–459 (1976).

    Article  Google Scholar 

  38. S. J. Parikh, K. W. Goyne, A. J. Margenot, F. N. Mukome, and F. J. Calderón, “Soil chemical insights provided through vibrational spectroscopy,” Adv. Agron. 126, 1–148 (2014).

    Article  Google Scholar 

  39. C. Plaza, B. Giannetta, I. Benavente, C. Vischetti, and C. Zaccone, “Density-based fractionation of soil organic matter: effects of heavy liquid and heavy fraction washing,” Sci. Rep. 9 (1), 10146 (2019).

    Article  Google Scholar 

  40. H. Rezaei, S. Saadat, R. Mirkhani, Y. R. Bagheri, L. Esmaeelnejad, M. Nouri Hosseini, A. Baybordi, A. Karami, M. H. Sedri, and F. Hamedi, “The state of soil organic carbon in agricultural lands of Iran with different agroecological conditions,” Int. J. Environ. Anal. Chem. 102 (16), 4623–4639 (2022).

    Article  CAS  Google Scholar 

  41. G. Ross, C. Wang, and P. Schuppli, “Hydroxylamine and ammonium oxalate solutions as extractants for iron and aluminum from soils,” Soil Sci. Soc. Am. J. 49 (3), 783–785 (1985).

    Article  CAS  Google Scholar 

  42. P. Rovira, P. Casals, J. Romanyà, P. Bottner, M.-M. Coûteaux, and V.R. Vallejo, “Recovery of fresh debris of different sizes in density fractions of two contrasting soils,” Eur. J. Soil Biol. 34 (1), 31–37 (1998).

    Article  Google Scholar 

  43. P. Rovira and V. R. Vallejo, “Physical protection and biochemical quality of organic matter in Mediterranean calcareous forest soils: a density fractionation approach,” Soil Biol. Biochem. 35 (2), 245–261 (2003).

    Article  CAS  Google Scholar 

  44. M. C. Rowley, S. Grand, J. E. Spangenberg, and E. P. Verrecchia, “Evidence linking calcium to increased organo-mineral association in soils,” Biogeochemistry 153 (3), 223–241 (2021).

    Article  CAS  Google Scholar 

  45. M. C. Rowley, S. Grand, and É. P. Verrecchia, “Calcium-mediated stabilisation of soil organic carbon,” Biogeochemistry 137 (1–2), 27–49 (2018).

    Article  CAS  Google Scholar 

  46. V. Semenov, T. Lebedeva, D. Sokolov, N. Zinyakova, V. Lopes de Gerenu, and M. Semenov, “Measurement of the soil organic carbon pools isolated using bio-physical-chemical fractionation methods,” Eurasian Soil Sci. 56 (9), 1327–1342 (2023).

    Article  CAS  Google Scholar 

  47. C. H. Sequeira, M. M. Alley, and B. P. Jones, “Evaluation of potentially labile soil organic carbon and nitrogen fractionation procedures,” Soil Biol. Biochem. 43 (2), 438–444 (2011).

    Article  CAS  Google Scholar 

  48. R. Setia, P. Gottschalk, P. Smith, P. Marschner, J. Baldock, D. Setia, and J. Smith, “Soil salinity decreases global soil organic carbon stocks,” Sci. Total Environ. 465, 267–272 (2013).

    Article  CAS  Google Scholar 

  49. I. A. Shabtai, R. C. Wilhelm, S. A. Schweizer, C. Höschen, D. H. Buckley, and J. Lehmann, “Calcium promotes persistent soil organic matter by altering microbial transformation of plant litter,” Nat. Commun. 14 (1), 6609 (2023).

    Article  CAS  Google Scholar 

  50. V. Sokoloff, “Effect of neutral salts of sodium and calcium on carbon and nitrogen in soils,” J. Agric. Res. 57 (3), 201–216 (1938).

    CAS  Google Scholar 

  51. P. Sollins, M. G. Kramer, C. Swanston, K. Lajtha, T. Filley, A. K. Aufdenkampe, R. Wagai, and R. D. Bowden, “Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial-and mineral-controlled soil organic matter stabilization,” Biogeochemistry 96, 209–231 (2009).

    Article  CAS  Google Scholar 

  52. G. Sposito, The Chemistry of Soils (Oxford Univ. Press, 2008).

    Google Scholar 

  53. R. Sutton, G. Sposito, M. S. Diallo, and H. Schulten, “Molecular simulation of a model of dissolved organic matter,” Environ. Toxicol. Chem. Int. J. 24 (8), 1902–1911 (2005).

    Article  CAS  Google Scholar 

  54. G. Thomas, “Exchangeable cations,” in Methods of Soil Analysis (Agron. Monogr., 1982), part 2.

  55. G. W. Thomas, “Soil pH and soil acidity,” in Methods of Soil Analysis, Part 3: Chemical Methods (1996), pp. 475–490.

  56. M. S. Torn, S. E. Trumbore, O. A. Chadwick, P. M. Vitousek, and D. M. Hendricks, “Mineral control of soil organic carbon storage and turnover,” Nature 389 (6647), 170–173 (1997).

    Article  CAS  Google Scholar 

  57. US Salinity Laboratory Staff, Diagnosis and Improvement of Saline and Alkali Soils (USDA Agric Handb 60, 1954).

  58. D. Vaughan and B. G. Ord, in Soil Organic Matter and Biological Activity, Ed. by D. Vaughan and R. E. Malcolm (Springer Netherlands, Dordrecht, 1985), pp. 1–35.

    Book  Google Scholar 

  59. A. Walkley and I. A. Black, “An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method,” Soil Sci. 37 (1), 29–38 (1934).

    Article  CAS  Google Scholar 

  60. L. Wen, D. Li, H. Chen, and K. Wang, “Dynamics of soil organic carbon in density fractions during post-agricultural succession over two lithology types, southwest China,” J. Environ. Manage. 201, 199–206 (2017).

    Article  CAS  Google Scholar 

  61. M. Xie, T. Zhang, S. Liu, Z. Liu, and Z. Wang, “Profile soil organic and inorganic carbon sequestration in maize cropland after long-term straw return,” Front. Environ. Sci. 11, 1095401 (2023).

    Article  Google Scholar 

  62. G. Yoo and M. M. Wander, “Tillage effects on aggregate turnover and sequestration of particulate and humified soil organic carbon,” Soil Sci. Soc. Am. J. 72 (3), 670–676 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO). The author also appreciates Tehran University (soil science and engineering department) for supporting of this research.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Zahedifard.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahedifard, N., Shahbazi, K., Mohammadi, M.H. et al. Soil Organic Carbon Fractions in Cultivated Calcareous Soils. Eurasian Soil Sc. 57, 780–793 (2024). https://doi.org/10.1134/S1064229323603220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323603220

Keywords:

Navigation