Skip to main content
Log in

Activities of CO2 Emission, N2 Fixation, and Denitrification during the Decay of Norway Spruce Coarse Woody Debris in Southern Taiga

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The activities of CO2 emission, N2 fixation, and denitrification, as well as the physiological state of the community of microbial decomposers are assessed at different stages of decay of coarse woody debris (CWD) in the incubation experiments with the Norway spruce (Picea abies L.) and the humus horizon of podzolic soil (Retisol). The CWD of five decomposition stages and soil are sampled at the experimental plots of the Central Forest State Reserve (Tver oblast, Russia). The maximum CO2 emissions are associated with CWD decay stages III and IV. In addition, characteristic of these stages are the maximum values of the important indices of CWD and soil microbial activity, such as the substrate-induced respiration (SIR, 50 µg C–CO2/(g h), share of easily decomposable С in organic matter (A1, 66%), and metabolic quotient qCO2 (0.78). Unlike the CO2 emission, the maximum activity of N2 fixation is recorded earlier, during decay stage II. The N2 fixation and denitrification activities indicate a gradual and intricately regulated transition process from the properties of CWD bacterial and fungal communities to those in soil during stages II, III, and IV. A dramatic decrease (more than threefold) is observed only for the C : N ratio in CWD at decay stage IV as compared with stage III. Although the CO2 emission at stage V sharply decreases, the CWD organic matter is less stable as compared with that of the Retisol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. V. I. Vasenev, N. D. Anan’eva, and K. V. Ivashchenko, “The effect of pollutants (heavy metals and diesel fuel) on the respiratory activity of constructozems (artificial soils),” Russ. J. Ecol. 44 (6), 475–483 (2013). https://doi.org/10.1134/S1067413613060118

    Article  Google Scholar 

  2. I. V. Yevdokimov, I. A. Yusupov, A. A. Larionova, S. S. Bykhovets, M. V. Glagolev, and S. A. Shavnin, “Thermal impact of gas flares on the biological activity of soils,” Eurasian Soil Sci. 50 (12), 1455–1462 (2017). https://doi.org/10.1134/S1064229317120067

    Article  Google Scholar 

  3. G. A. Zavarzin and A. G. Zavarzina, “Xylotrophic and mycophilic bacteria in formation of dystrophic waters,” Microbiology 78 (5), 523–534 (2009).

    Article  Google Scholar 

  4. D. G. Zamolodchikov, V. V. Kaganov, and O. N. Lipka, “Potential absorption of carbon by the phytomass of the forest stand during the restoration of tugai forests,” Lesovedenie, No. 2, 115–126 (2020). https://doi.org/10.31857/S0024114820020114

    Article  Google Scholar 

  5. V. N. Kudeyarov, G. A. Zavarzin, S. A. Blagodatskii, A. V. Borisov, P. Yu. Voronin, V. A. Demkin, T. S. Demkina, et al., Pools and Flows of Carbon in Terrestrial Ecosystems in Russia (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  6. A. V. Kurakov, I. V. Evdokimov, S. V. Maksimovich, and N. V. Kostina, “Microbial community during the decomposition of spruce deadwood and its activity in the release of carbon dioxide, nitrogen fixation and denitrification,” in Problems of Forest Phytopathology and Mycology (Karel. Nauchn. Tsentr Ross. Akad. Nauk, Petrozavodsk, 2018) [in Russian].

    Google Scholar 

  7. A. V. Kurakov, I. S. Prokhorov, N. V. Kostina, E. G. Makhova, and V. S. Sadykova, “Stimulation of nitrogen fixation in soddy-podzolic soils with fungi,” Eurasian Soil Sci. 39 (9), 968–974 (2006).

    Article  Google Scholar 

  8. A. V. Kurakov and T. A. Semenova, “Species diversity of microscopic fungi in forest ecosystems of the southern taiga of the European part of Russia,” Mikol. Fitopatol. 50, 367–378 (2016).

    Google Scholar 

  9. A. A. Larionova, A. K. Kvitkina, S. S. Bykhovets, V. O. Lopes de Gerenyu, Yu. G. Kolyagin, and V. V. Kaganov, “Effect of nitrogen on mineralization and humification of forest litter in a model experiment,” Lesovedenie, No. 2, 128–139 (2017).

    Google Scholar 

  10. A. L. Stepanov and L. V. Lysak, Gas Chromatography Methods in Soil Microbiology (MAKS Press, Moscow, 2002) [in Russian].

    Google Scholar 

  11. T. A. Sokolova and T. Ya. Dronova, I. I. Tolpeshta, and S. E. Ivanova, Interaction of Forest Loamy Podzolic Soils with Model Acid Precipitation and Acid-Base Buffering Capacity of Podzolic Soils (Mosk. Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  12. T. A. Sokolova, I. I. Tolpeshta, L. V. Lysak, Yu. A. Zavgorodnyaya, T. S. Chalova, M. M. Karpukhin, and Yu. G. Izosimova, “Biological characteristics and concentrations of extractable Fe, Al, and Si compounds in spruce rhizosphere in podzolic soil,” Eurasian Soil Sci. 51 (11), 1317–1325 (2018). https://doi.org/10.1134/S106422931811008X

    Article  Google Scholar 

  13. V. G. Storozhenko and E. V. Shorokhova, “Biogeocenotic and xylolithic parameters of sustainable taiga spruce forests,” in Fungal Communities of Forest Ecosystems (Karel. Nauchn. Tsentr Ross. Akad. Nauk, Moscow–Petrozavodsk, 2012), Vol. 3, pp. 22–40 [in Russian].

  14. J. P. E. Anderson and K. H. Domsch, “A physiological method for the quantitative measurement of microbial biomass in soils,” Soil Biol. Biochem. 10, 215–221 (1978). https://doi.org/10.1016/0038-0717(78)90099-8

    Article  Google Scholar 

  15. M. H. Beare, C. L. Neely, D. C. Coleman, and W. L. Hargrove, “A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residues,” Soil Biol. Biochem. 22, 585–594 (1990). https://doi.org/10.1016/0038-0717(90)90002-H

    Article  Google Scholar 

  16. A. Benoist, D. Houle, R. L. Bradley, and J.-P. Bellenge, “Evaluation of biological nitrogen fixation in coarse woody debris from Eastern Canadian boreal forests,” Soil Biol. Biochem. 165, 108531 (2022). https://doi.org/10.1016/j.soilbio.2021.108531

    Article  Google Scholar 

  17. B. Berg, “Decomposition patterns for foliar litter: a theory for influencing factors,” Soil Biol. Biochem. 78, 222–232 (2014). https://doi.org/10.1016/j.soilbio.2014.08.005

    Article  Google Scholar 

  18. E. V. Blagodatskaya and T. H. Anderson, “Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils,” Soil Biol. Biochem. 30, 1269–1274 (1998). https://doi.org/10.1016/S0038-0717(98)00050-9

    Article  Google Scholar 

  19. S. A. Blagodatsky, O. Heinemeyer, and J. Richter, “Estimating the active and total soil microbial biomass by kinetic respiration analysis,” Biol. Fertil. Soils 32, 73–81 (2000). https://doi.org/10.1007/s003740000219

    Article  Google Scholar 

  20. J. Chen, J. Heikkinen, E. A. Hobbie, K. T. Rinne-Garmston (Rinne), R. Penttila, and R. Mäkipää, “Strategies of carbon and nitrogen acquisition by saprotrophic and ectomycorrhizal fungi in Finnish boreal Picea abies-dominated forests,” Fungal Biol. 123, 456–454 (2019). https://doi.org/10.1016/j.funbio.2019.03.005

    Article  Google Scholar 

  21. G. G. O. Dossa, Y.-Q. Yang, W. Hu, E. Paudel, D. Schaefer, Y.-P. Yang, K.-F. Cao, J.-C. Xu, K. E. Bushley, and R. D. Harrison, “Fungal succession in decomposing woody debris across a tropical forest disturbance gradient,” Soil Biol. Biochem. 155, 108142 (2021). https://doi.org/10.1016/j.soilbio.2021.108142

    Article  Google Scholar 

  22. M. E. Harmon, J. F. Franklin, F. J. Swanson, P. Sollins, S. V. Gregory, J. D. Lattin, N. H. Anderson, et al., “Ecology of coarse woody debris in temperate ecosystems,” Adv. Ecol. Res. 15, 133–276 (1986). https://doi.org/10.1016/S0065-2504(08)60121-X

    Article  Google Scholar 

  23. K. Lajtha, “Nutrient retention and loss during ecosystem succession: revisiting a classic model,” Ecology 101, e02896 (2020). https://doi.org/10.1002/ecy.2896

    Article  Google Scholar 

  24. S. M. Leppänen, M. Salemaa, A. Smolander, R. Mäkipää, and M. Tiirola, “Nitrogen fixation and methanotrophy in forest mosses along a N deposition gradient,” Environ. Exp. Bot. 90, 62–69 (2013). https://doi.org/10.1016/j.envexpbot.2012.12.006

    Article  Google Scholar 

  25. R. Mäkipää, S. M. Leppänen, S. S. Munoz, A. Smolander, M. Tiirola, T. Tuomivirta, and H. Fritze, “Methanotrophs are core members of the diazotroph community in decaying Norway spruce logs,” Soil Biol. Biochem. 120, 230–232 (2018). https://doi.org/10.1016/j.soilbio.2018.02.012

    Article  Google Scholar 

  26. L. Mukhortova, N. Pashenova, M. Meteleva, L. Krivobokov, and G. Guggenberger, “Temperature sensitivity of CO2 and CH4 fluxes from coarse woody debris in Northern boreal forests,” Forests 12, 624 (2021). https://doi.org/10.3390/f12050624

    Article  Google Scholar 

  27. J. I. Prosser, B. J. M. Bohannan, T. P. Curtis, R. J. Ellis, M. K. Firestone, R. P. Freckleton, J. L. Green, L. E. Green, et al., “The role of ecological theory in microbial ecology,” Nat. Rev. Microbiol. 5, 384–392 (2007). https://doi.org/10.1038/nrmicro1643

    Article  Google Scholar 

  28. M. Salemaa, A.-J. Lindroos, P. Merila, R. Mäkipää, and A. Smolander, “N2 fixation associated with the bryophyte layer is suppressed by low levels of nitrogen deposition in boreal forests,” Sci. Total Environ. 653, 995–1004 (2019). https://doi.org/10.1016/j.scitotenv.2018.10.364

    Article  Google Scholar 

  29. J. N. Stokland, “Volume increment and carbon dynamics in boreal forest when extending the rotation length towards biologically old stands,” For. Ecol. Manage. 488, 119017 (2016). https://doi.org/10.1016/j.foreco.2021.119017

    Article  Google Scholar 

  30. J. N. Stokland, J. Sitonen, and B. G. Jonsson, Biodiversity in Dead Wood (Cambridge Univ. Press, Cambridge, 2012). https://doi.org/10.1017/CBO9781139025843

  31. E. Shorohova and E. Kapitsa, “The decomposition rate of non-stem components of coarse woody debris (CWD) in European boreal forests mainly depends on site moisture and tree species,” Eur. J. For. Res. 135, 593–606 (2016). https://doi.org/10.1007/s10342-016-0957-8

    Article  Google Scholar 

  32. E. Shorohova, E. Kapitsa, A. Kuznetsov, S. Kuznetsova, V. Lopes de Gerenyu, V. Kaganov, and I. Kurganova, “Coarse woody debris density and carbon concentration by decay classes in mixed montane wet tropical forests,” Biotropica 54, 635–644 (2022). https://doi.org/10.1111/btp.13077

    Article  Google Scholar 

  33. V. Vek, I. Poljanšek, M. Humar, S. Willför, and P. Oven, “In vitro inhibition of extractives from knotwood of Scots pine (Pinus sylvestris) and black pine (Pinus nigra) on growth of Schizophyllum commune, Trametes versicolor, Gloeophyllum trabeum and Fibroporia vaillantii,” Wood Sci. Technol. 54, 1645–1662 (2020). https://doi.org/10.1007/s00226-020-01229-7

    Article  Google Scholar 

  34. C. Wu, C. E. Prescott, C. Shua, B. Li, Zh. Zhang, H. Wang, Y. Zhang, Y. Yuanqiu Liu, and G. G. Wang, “Forest fragmentation slows the decomposition of coarse woody debris in a subtropical forest,” For. Sci. 67, 682–693 (2021). https://doi.org/10.1093/forsci/fxab035

    Article  Google Scholar 

  35. C. Wu, Z. Zhang, C. Shu, O. Mo, H. Wang, F. Kong, Y. Zhang, G. G. Wang, and Y. Liu, “The response of coarse woody debris decomposition and microbial community to nutrient additions in a subtropical forest,” For. Ecol. Manage. 460, 117799 (2020). https://doi.org/10.1016/j.foreco.2019.117799

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank A.K. Kvitkina (Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences) for her assistance in the organization of soil sampling and sample conveyance to laboratory.

Funding

The activities of carbon cycle processes (about half experimental work) were determined under state project no. 122040500037-6. The study of the nitrogen cycle as well as sampling, sample conveyance, and storage was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-1396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Yevdokimov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yevdokimov, I.V., Kostina, N.V., Bykhovets, S.S. et al. Activities of CO2 Emission, N2 Fixation, and Denitrification during the Decay of Norway Spruce Coarse Woody Debris in Southern Taiga. Eurasian Soil Sc. 56, 321–328 (2023). https://doi.org/10.1134/S1064229322602347

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322602347

Keywords:

Navigation