Skip to main content
Log in

The influence of aminopolycarboxylates on the sorption of copper (II) cations by (Hydro)oxides of iron, Aluminum, and manganese

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The influence of some complexing agents of (poly)aminopolycarboxylic acids (diethylenetriaminopentaacetic acid (DTPA), ethylenediaminotetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and iminodiacetic acid (IDA)) on the sorption of Cu2+ by crystal and amorphous (hydr)oxides of Fe(III), Al(III), and Mn(IV) that are widespread mineral components of soils was studied. The obtained results are considered in terms of complex-formation in the solution and on the sorbent’s surface. The effect of the complexing agents on the metal sorption (mobilization/immobilization) is determined by (1) the stability, structure, and sorption capability of compexonates formed in the solution; (2) the acidity, and (3) the nature of the sorbent. The desorption effect on Cu2+ cations was found to change in the following sequence of complexing agents: EDTA > DTPA ≫ NTA > IDA. The high-dentate complexing agents (EDTA, DTPA) had the greatest impact on ?u2+ cations bound with crystalline (hydr)oxides of Fe, Al, and Mn. The low denticity of the complexing agents (IDA, NTA) and binding of ?u2+ with amorphous sorbents leads to the weakening of desorption. The decrease in acidity promoted the mobilization of the metal under the influence of complexing agents; the increase in acidity caused its immobilization. The growth in the mobility of heavy metals bound with soil (hydr)oxides of Fe, Al, and Mn due to the complexing agents entering the surface and ground water is considered a factor of ecological risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. N. Vodyanitskii, “Iron hydroxides in soils: a review of publications,” Eurasian Soil Sci. 43 (11), 1244–1254 (2010). @

    Article  Google Scholar 

  2. Yu. N. Vodyanitskii, “Mineralogy and geochemistry of manganese: a review of publications,” Eurasian Soil Sci. 42 (10), 1170–1178 (2009).

    Article  Google Scholar 

  3. Yu. N. Vodyanitskii, Manganese Oxides in Soils (Dokuchaev Soil Science Inst., Moscow, 2005) [in Russian].

    Google Scholar 

  4. Yu. N. Vodyanitskii, Iron compounds and Their Role in Soil Protection (Dokuchaev Soil Science Inst., Moscow, 2010) [in Russian].

    Google Scholar 

  5. M. V. Didik, T. N. Kropacheva, A. A. Lekontseva, A. S. Antonova, Yu. V. Rabinovich, and V. I. Kornev, “Application of complexing agents for remediation of soils polluted with heavy metals,” Ekol. Prom-st Ross., No. 10, 12–17 (2014).

    Google Scholar 

  6. N. M. Dyatlova, V. Ya. Temkin, and K. I. Popov, Complexing Agents and Metal Complexes (Khimiya, Moscow, 1988) [in Russian].

    Google Scholar 

  7. G. N. Koptsik, “Modern approaches to remediation of heavy metal polluted soils: a review,” Eurasian Soil Sci. 47 (7), 707–722 (2014). doi 10.1134/S1064229314070072

    Article  Google Scholar 

  8. T. N. Kropacheva, M. V. Didik, and V. I. Kornev, “Modeling of heavy metal cation sorption by hydroxides in the presence of EDTA,” Sorbtsionnye Khromatogr. Protsessy 13 (3), 360–368 (2013).

    Google Scholar 

  9. T. M. Minkina, G. V. Motuzova, and O. G. Nazarenko, Composition of Heavy Metal Compounds in Soils (Everest, Rostov-on-Don, 2009) [in Russian].

    Google Scholar 

  10. D. S. Orlov, L. K. Sadovnikova, and N. I. Sukhanova, Soil Chemistry (Vysshaya Shkola, Moscow, 2005) [in Russian].

    Google Scholar 

  11. L. V. Perelomov, D. L. Pinskiy, and A. Violante, “Effect of organic acids on the adsorption of copper, lead, and zinc by goethite,” Eurasian Soil Sci. 44 (1), 22–28 (2011).

    Article  Google Scholar 

  12. S. I. Pechenyuk, D. L. Rogachev, A. G. Kasikov, R.A. Popova, O. A. Zalkind, and L. F. Kuz’mich, “Hydroxides obtained by hydrolysis of concentrated solutions of Fe(III) salts,” Zh. Neorg. Khim. 30 (2), 311–316 (1985).

    Google Scholar 

  13. I. O. Plekhanova and V. A. Bambusheva, “Extraction methods for studying the fractional composition of heavy metals in soils and their comparative assessment,” Eurasian Soil Sci. 43 (9), 1004–1010 (2010).

    Article  Google Scholar 

  14. V. S. Putilina, I. V. Galitskaya, and T. I. Yuganova, Adsorption of Heavy Metals by Soils and Minerals. Characteristics of Sorbent, Conditions, Parameters, and Mechanisms of Sorption (State Public Scientific-Technical Library, Novosibirsk, 2009) [in Russian].

    Google Scholar 

  15. T. A. Sokolova and S. Ya. Trofimov, Sorption Properties of Soils. Adsorption. Cation Exchange (Grif i K, Tula, 2009) [in Russian].

    Google Scholar 

  16. F. V. Chukhrov, A. I. Gorshkov, and V. A. Drits, Supergene Manganese Oxides (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  17. R. Apak, “Adsorption of heavy metal ions on soil surfaces and similar substances: theoretical aspects,” in Encyclopedia of Surface and Colloid Science, Ed. by P. Somasundaran (Taylor and Francis, Boca Raton, FL, 2006), Vol. 1, pp. 484–509. doi 10.1081/E-ESCS-12002803910.1081/E-ESCS-120028039

    Google Scholar 

  18. M. G. Burnett, C. Hardacre, J. M. Mallon, H. J. Mawhinney, and R. M. Ormerod, “The enhanced adsorption of cadmium on hydrous aluminium(III) hydroxide by ethylenediaminetetraacetate,” Phys. Chem. Chem. Phys. 2, 1273–1279 (2000). doi 10.1039/A909612D

    Article  Google Scholar 

  19. R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Wiley, New York, 2003).

    Book  Google Scholar 

  20. E. Cristiano, Y.-J. Hu, M. Siegfried, D. Kaplan, and H. Nitsche, “A comparison of point of zero charge measurement methodology,” Clays Clay Miner. 59 (2), 107–115 (2011). doi 10.1346/CCMN.2011.0590201

    Article  Google Scholar 

  21. D. C. Girvin, P. L. Gassman, and H. Bolton Jr., “Adsorption of nitrilotriacetate (NTA), Co and CoNTA by gibbsite,” Clays Clay Miner. 44 (6), 757–768 (1996). doi 10.1346/CCMN.1996.0440606

    Article  Google Scholar 

  22. T. P. Knepper, “Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment,” Trends Anal. Chem. 22 (10), 708–724 (2003). doi 10.1016/S0165-9936(03)01008-2

    Article  Google Scholar 

  23. D. Leštan, C.-L. Luo, and X.-D. Li, “The use of chelating agents in the remediation of metal-contaminated soils: a review,” Environ. Pollut. 153 (1), 3–13 (2008). doi 10.1016/j.envpol.2007.11.015

    Article  Google Scholar 

  24. J. E. McLean and B. E. Bledsoe, Behavior of Metals in Soils, EPA Ground Water Issue EPA/540/S-92/018 (US Environmental Protection Agency, Washington, DC, 1992), pp. 1–25.

    Google Scholar 

  25. B. Nowack and L. Sigg, “Adsorption of EDTA and metal-EDTA complexes onto goethite,” J. Colloid Interface Sci. 177, 106–121 (1996). doi 10.1006/ jcis.1996.0011

    Article  Google Scholar 

  26. B. Nowack, J. Lutzenkirchen, P. Behra, and L. Sigg, “Modeling the adsorption of metal-EDTA complexes onto oxides,” Environ. Sci. Technol. 30 (7), 2397–2405 (1996). doi 10.1021/es9508939

    Article  Google Scholar 

  27. C. Oviedo and J. Rodrígues, “EDTA: the chelating agent under environmental scrutiny,” Quim. Nova 26 (6), 901–905 (2003).

    Article  Google Scholar 

  28. P. J. Pretorius and P. W. Linder, “The adsorption characteristics of d-manganese dioxide: a collection of diffuse double layer constants for the adsorption of H+, Cu2+, Ni2+, Cd2+ and Pb2+,” Appl. Geochem. 16 (9–10), 1067–1082 (2001). doi 10.1016/S0883-2927(01)00011-7

    Article  Google Scholar 

  29. D. L. Sparks, Environmental Soil Chemistry (Academic, London, 2003).

    Google Scholar 

  30. The Environmental Chemistry of Aluminum, Ed. by G. Sposito (CRC Press, Boca Raton, FL, 1996).

  31. J. W. Tonkin, L. S. Balistrieri, and J. W. Murray, “Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model,” Appl. Geochem. 19 (1), 29–53 (2004). doi 10.1016/S0883-2927(03)00115-X

    Article  Google Scholar 

  32. S. S. Tripathy, S. B. Kanungo, and S. K. Mishra, “The electrical double layer at hydrous manganese dioxide/electrolyte interface,” J. Colloid Interface Sci. 241 (1), 112–119 (2001). doi 10.1006/jcis.2001.7722

    Article  Google Scholar 

  33. M. Villalobos, J. Bargar, and G. Sposito, “Trace metal retention on biogenic manganese oxide nanoparticles,” Elements 1 (4), 223–226 (2005). doi 10.2113/gselements.1.4.223

    Article  Google Scholar 

  34. NIST Standard Reference Database 46. Critically Selected Stability Constants of Metal Complexes: Version 8.0. http://www.nist.gov/srd/nist46.cfm.

  35. Academic Software, IUPAC Stability Constants Database (SC-Database, data version 4.74). http://www. acadsoft.co.uk.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Kropacheva.

Additional information

Original Russian Text © T.N. Kropacheva, A.S. Antonova, V.I. Kornev, 2016, published in Pochvovedenie, 2016, No. 7, pp. 822–830.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kropacheva, T.N., Antonova, A.S. & Kornev, V.I. The influence of aminopolycarboxylates on the sorption of copper (II) cations by (Hydro)oxides of iron, Aluminum, and manganese. Eurasian Soil Sc. 49, 765–772 (2016). https://doi.org/10.1134/S1064229316070061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229316070061

Keywords

Navigation