Skip to main content
Log in

Experimental Study of Optical Characteristics of an Acousto-Optic Filter in a Wavelength Interval of 450–1700 nm

  • NOVEL RADIO SYSTEMS AND ELEMENTS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

An acousto-optic (AO) tunable filter based on a paratellurite (TeO2) crystal with two piezoelectric transducers that provides arbitrary spectral addressing in a wavelength interval of 450–1700 nm is developed. The geometric parameters of the crystal are calculated from the condition for minimization of the chromatic shift of image in the confocal optical system of the spectrometer within the entire working spectral interval. The resolution and transmittance are experimentally studied versus the aperture of the AO filter and the working wavelength. Examples of spectral images of test objects obtained with the aid of a prototype of a video spectrometer based on the AO filter are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. I. Balakshii, V. N. Parygin, and L. I. Chirkov, Physical Fundamentals of Acousto-Optics (Radio i Svyaz’, Moscow, 1985).

    Google Scholar 

  2. M. M. Mazur and V. E. Pozhar, Izmerit. Tekh., No. 9, 29 (2015).

  3. V. Ya. Molchanov, Yu. I. Kitaev, A. I. Kolesnikov, et al., Theory and Practice of Modern Acousto-Optics (MISIS, Moscow, 2015).

    Google Scholar 

  4. E. Dekemper, N. Loodts, B. V. Opstal et al., Appl. Opt. 51 (25), 6259 (2012).

    Article  Google Scholar 

  5. H. R. Morris, C. C. Hoyt, and P. J. Treado, Appl. Spectrosc. 48, 857 (1994).

    Article  Google Scholar 

  6. K. B. Yushkov, J. Champagne, J.-C. Kastelik, et al., Biomed. Opt. Express 11, 7053 (2020).

    Article  Google Scholar 

  7. M. Bouhifd, M. Whelan, M. Aprahamian, Proc. SPIE 5143, 305 (2003).

    Article  Google Scholar 

  8. A. S. Machikhin, V. E. Pozhar, and V. I. Batshev, Instrum. Experim. Tech. 56, 477 (2013).

    Article  Google Scholar 

  9. A. Machikhin, V. Pozhar, A. Viskovatykh, and L. Burmak, Appl. Opt. 54 (25), 7508 (2015).

    Article  Google Scholar 

  10. Design and Fabrication of Acousto-Optic Devices, Eds. by A. Goutzoulis and D. Pape, (Boca Raton, CRC Press, 1994).

  11. N. Gupta and V. B. Voloshinov, Appl. Opt. 46, 1081 (2007).

    Article  Google Scholar 

  12. H. Zhao et al., Opt. Express 25 (20), 23809 (2017).

    Article  Google Scholar 

  13. M. N. Kozun, A. E. Bourassa, D. A. Degenstein, and P. R. Loewen, Rev. Sci. Instrum. 91, 103106 (2020).

    Article  Google Scholar 

  14. A. S. Machikhin, V. I. Batshev, V. E. Pozhar, and S. V. Boritko, Opt. J. 86 (12), 59 (2019).

    Google Scholar 

  15. V. I. Batshev, A. S. Machikhin, A. B. Kozlov, S. V. Boritko, M. O. Sharikova, A. V. Karandin, V. E. Pozhar, and V. A. Lomonov, J. Commun. Technol. Electron. 65, 800 (2022).

    Article  Google Scholar 

  16. V. Batshev, S. Boritko, A. Kozlov, et al., in Proc. Int. Conf. Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), St. Petersburg, 31 May–4 June, 2021 (Univ. Aerospace Instrum., St. Petersburg, 2021), pp. 1–4.

  17. I. C. Chang, Electron. Lett. 11 (25–26), 617 (1975).

  18. V. Batshev, A. Machikhin, G. Martynov, et al., Sensors 20 (16), 4439 (2020).

    Article  Google Scholar 

  19. A. Machikhin, V. Batshev, and V. Pozhar, J. Opt. Soc. Am. A. 34, 1109 (2017).

    Article  Google Scholar 

  20. E. S. Wachman, W. Niu, and D. L. Farkas, Appl. Opt. 35, 220 (1996).

    Article  Google Scholar 

  21. Photography–Electronic Still Picture Cameras–Resolution Measurements (Int. Organization for Standardization, ISO Standard 12233, Geneva, 2000).

  22. M. Kenichiro, Y. Takayuki, N. Yukihiro, and S. Masayuki, Opt. Express 22, 6040 (2014).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-20095). The development of the technology for fabrication of the AO crystals was supported by the State Contract of the Federal Research Center Crystallography and Photonics, Russian Academy of Sciences (project AAAA A19 119073190049 2).

In this work, we used the shared instrumentation of the Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences (https://ntcup.ru/ckp-i-unu/) and the equipment of the unique setup “Laser Heating in High Pressure Cells” at the Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences (https://ckp-rf.ru/usu/507563/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Batshev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Chikishev

The work was reported at the Fifth International Youth Conference “Information and Communication Technologies: Modern Achievements” (Astrakhan, October 4–7, 2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batshev, V.I., Kozlov, A.B., Sharikova, M.O. et al. Experimental Study of Optical Characteristics of an Acousto-Optic Filter in a Wavelength Interval of 450–1700 nm. J. Commun. Technol. Electron. 67, 1468–1474 (2022). https://doi.org/10.1134/S1064226922120026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922120026

Navigation