Skip to main content
Log in

Optimization of the Growth Technology for Crystals with Garnet Structure Based on X-Ray Diffraction Data

  • Real Structure of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

High efficiency of the methods of double-crystal X-ray diffractometry (DCXRD) and topography for improving the growth technology of highly homogeneous crystals has been demonstrated on the example of gadolinium gallium garnet (GGG) single crystals. The main types of structural defects observed in Czochralski-grown GGG crystals are found to be macroscopic inhomogeneity of composition distribution, caused by the facet effect manifestation; microinhomogeneous distribution of impurity and main components of the composition in striations; dislocations; and second-phase inclusions. The relationship between the type and density of newly formed defects and the technological conditions for crystal growth are considered. Optimization of the composition of crystals and their growth technology made it possible to obtain high-quality dislocation-free crystals of GGG and complex-substituted garnets on its basis for magneto-optical and microwave devices, elements of solid-state lasers, and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. V. V. Osiko, V. B. Sigachev, V. I. Strelov, and M. I. Timoshechkin, Kvantovaya Elektron. 18 (2), 179 (1991).

    ADS  Google Scholar 

  2. W. F. Krups, Opt Commun. 12 (2), 210 (1974).

    Article  ADS  Google Scholar 

  3. L. J. Varnerin, IEEE Trans. Magn. 404 (1972).

  4. L. S. Palatnik and I. I. Papirov, Epitaxial Films (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  5. H. L. Glass, Mat. Res. Bul. 8, 43 (1973).

    Article  Google Scholar 

  6. W. I. Stacy, J. Cryst. Growth 24/25, 137 (1974).

    Article  ADS  Google Scholar 

  7. I. L. Shul’pina and I. A. Prokhorov, Crystallogr. Rep. 57 (5), 661 (2012).

    Article  ADS  Google Scholar 

  8. W. J. Bartels and W. Nijman, J. Cryst. Growth 44, 518 (1978).

    Article  ADS  Google Scholar 

  9. A. P. Turner, T. Vreeland, and D. P. Pope, Acta Crystallogr. A 24 (4), 452 (1968).

    Article  ADS  Google Scholar 

  10. G. Mack, Z. Phys. 152, 19 (1958).

    Article  ADS  Google Scholar 

  11. W. I. Stacy and M. M. Janssen, J. Cryst. Growth 27, 282 (1974).

    Article  ADS  Google Scholar 

  12. M. G. Mil’vidskii and V. B. Osvenskii, Problems of Modern Crystallography (Nauka, Moscow, 1975) [in Russian], p. 79.

    Google Scholar 

  13. R. F. Belt, J. P. Moss, and J. R. Latore, Mat. Res. Bull. 8, 357 (1973).

    Article  Google Scholar 

  14. V. M. Glazov and V. S. Zemskov, Physicochemical Principles of Semiconductor Doping (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  15. D. J. Carlson and A. F. Witt, J. Cryst. Growth 108, 508 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Prokhorov.

Additional information

Original Russian Text © I.A. Prokhorov, B.G. Zakharov, V.I. Strelov, 2018, published in Kristallografiya, 2018, Vol. 63, No. 5, pp. 713–718.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokhorov, I.A., Zakharov, B.G. & Strelov, V.I. Optimization of the Growth Technology for Crystals with Garnet Structure Based on X-Ray Diffraction Data. Crystallogr. Rep. 63, 729–733 (2018). https://doi.org/10.1134/S1063774518050255

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774518050255

Navigation