Skip to main content
Log in

Acousto-Optic Deflector with Heat Removal from the Piezotransducer by Sound Insulation of a Heat Radiator

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A method is proposed for removing heat from the transducer of an acousto-optic deflector without substantial acoustic damping. The rear surface of the transducer and the heat–radiator surface are kept in contact through a thin sound-insulating fluid layer. The method is based on the considerable difference in the complex acoustic impedances for shear vibrations of fluids and a solid (the piezotransducer) by means of efficient heat transfer through the fluid. In the experiment, a continuous operation mode of the acousto-optic deflector is achieved with an acoustic wave intensity of more than 20 W/cm2. The acousto-optic deflector has been created that operates in the Bragg diffraction mode with a phase–modulation index of 3π with an input continuous controlling electric power of 3 W. The deflector characteristics for a light wavelength of 1.06 μm are as follows: diffraction efficiency no less than 90% in the 25 MHz frequency band at an absolute scanning angle of 40 mrad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. T. Yano, M. Kawabuichi, A. Fukumoto, and A. Watanabe, Appl. Phys. Lett. 26 (12), 689 (1975).

    Article  ADS  Google Scholar 

  2. L. N. Magdich and V. Ya. Molchanov, Acousto-Optic Devices and their Application (Sovetskoe Radio, Moscow, 1978) [in Russian].

    Google Scholar 

  3. S. N. Antonov, A. V. Vainer, V. V. Proklov, and Yu. G. Rezvov, Tech. Phys. 58 (9), 1346 (2013).

    Article  Google Scholar 

  4. S. N. Antonov, Tech. Phys. 61 (1), 134 (2016).

    Article  Google Scholar 

  5. J. Aboujeib, A. Perennou, V. Quintard, and J. L. Bihan, J. Opt. A: Pure Appl. Opt. 9, 463 (2007).

    Article  ADS  Google Scholar 

  6. V. I. Balakshii, V. N. Parygin, and L. E. Chirkov, Physical Fundamentals of Acousto-Optics (Radio i Svyaz’, Moscow, 1985) [in Russian].

    Google Scholar 

  7. S. N. Antonov, Tech. Phys. 61 (10), 1597 (2016).

    Article  Google Scholar 

  8. S. Antonov, A. Vainer, V. Proklov, and Y. Rezvov, Appl. Opt. 48 (7), 171 (2009).

    Article  ADS  Google Scholar 

  9. V. I. Balakshy, V. B. Voloshinov, V. A. Karasev, V. Ya. Molchanov, and V. P. Semenkov, Proc. SPIE 2713, 164 (1995).

    Article  ADS  Google Scholar 

  10. S. N. Mantsevich, T. V. Yukhnevich, and V. B. Voloshinov, Opt. Spectrosc. 122 (4), 675 (2017).

    Article  ADS  Google Scholar 

  11. S. N. Antonov, E. V. Kuznetsova, B. I. Mirgorodskii, and V. V. Proklov, Akust. Zh. 28 (4), 433 (1982).

    Google Scholar 

  12. S. N. Antonov and A. B. Taeshnikov, Akust. Zh. 37 (5), 837 (1991).

    Google Scholar 

  13. M. A. Mikheev, Fundamentals of Heat Transfer (Energiya, Moscow, 1973) [in Russian].

    Google Scholar 

  14. L. M. Brekhovskikh and O. A. Godin, Acoustics of Layered Media (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  15. G. L. Roshchina, D. K. Yurilova, G. P. Kinzerskaya, and A. P. Rudenko, in Interdepartmental Scientific Collection of Works “Physics of Liquid State” (Vishcha Shkola, Kiev, 1975), Issue 3 [in Russian].

  16. T. Litovits and K. Devis, in Physical Acoustics. Principles and Methods, Ed. by W. P. Mason (Academic Press, New York, 1965; Mir, Moscow, 1968), Vol. 2, Part A.

  17. V. A. Krasil’nikov and V. V. Krylov, Introduction to Physical Acoustics (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  18. S. N. Antonov, Acoust. Phys. 63 (4), 410 (2017).

    Article  ADS  Google Scholar 

  19. E. I. Morozova, et al., Vestn. Tver. Gos. Univ., Ser. Fiz., No. 1, 38 (2015).

  20. S. N. Antonov, Acoust. Phys. 64 (4), 432 (2018).

    Article  ADS  Google Scholar 

  21. S. N. Antonov, M. R. Kozlov, and V. V. Proklov, Opt. Spektrosk. 50 (4), 805 (1991).

    Google Scholar 

Download references

Funding

This work was supported by government funding, the state contract no. 0030-2019-0014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Antonov.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, S.N. Acousto-Optic Deflector with Heat Removal from the Piezotransducer by Sound Insulation of a Heat Radiator. Acoust. Phys. 65, 487–494 (2019). https://doi.org/10.1134/S1063771019050038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771019050038

Keywords:

Navigation