Skip to main content
Log in

Inflammation and Limb Regeneration: The Role of the Chemokines

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The regeneration of injured tissues is a complex physiological process. The immune system plays an indispensable role in the regeneration process and internal environment stability of damaged tissues. Heavy immune cell infiltration during wound healing stages of regeneration, aggregation of immune cells not only help to remove cell debris, but also secrete chemokines and cell growth factors. Among them, chemo-kines are the key factors in the process of regeneration, including Cys (C), Cys Cys (CC), Cys-x-Cys (CXC) and Cys-x3-Cys (CX3C) subfamilies, which are involved in regulating the migration and activation of immune cells, angiogenesis, functional changes of fibroblasts. This review focuses on the relationship among chemokines and immune cells and regenerative ability during limb regeneration, demonstrates the important contribution of chemokines in limb regeneration of salamander and explores the therapeutic potential of targeting chemokines as a new method to improve tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abnave, P. and Ghigo, E., Role of the immune system in regeneration and its dynamic interplay with adult stem cells, Semin. Cell Dev. Biol., 2019, vol. 87, pp. 160–168.

    Article  CAS  PubMed  Google Scholar 

  2. Alibardi, L. Review: limb regeneration in humans: dream or reality?, Ann. Anat., 2018, vol. 217, pp. 1–6.

    Article  PubMed  Google Scholar 

  3. Arslan, F., Houtgraaf, J.H., Keogh, B., et al., Treatment with OPN-305, a humanized anti-Toll-Like receptor-2 antibody, reduces myocardial ischemia/reperfusion injury in pigs, Circ. Cardiovasc. Interv., 2012, vol. 5, no. 2, pp. 279–287.

    Article  CAS  PubMed  Google Scholar 

  4. Balabanian, K., Lagane, B., Infantino, S., et al., The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes, J. Biol. Chem., 2005, vol. 280, no. 42, pp. 35760–35766.

    Article  CAS  PubMed  Google Scholar 

  5. Beddaoui, M., Coupland, S.G., and Tsilfidis, C., Recovery of function following regeneration of the damaged retina in the adult newt, Notophthalmus viridescens, Doc. Ophthalmol., 2012, vol. 125, no. 2, pp. 91–100.

    Article  PubMed  Google Scholar 

  6. Bolaños-Castro, L.A., Walters, H.E., García Vázquez, R.O., et al., Immunity in salamander regeneration: where are we standing and where are we headed?, Dev. Dyn., 2021, vol. 250, no. 6, pp. 753–767.

    Article  PubMed  Google Scholar 

  7. Bonecchi, R., Galliera, E., Borroni, E.M., et al., Chemokines and chemokine receptors: an overview, Front. Biosci. (Landmark Ed.), 2009, vol. 14, pp. 540–551.

    Article  CAS  Google Scholar 

  8. Chen, G. and Robert, J., Antiviral immunity in amphibians, Viruses, 2011, vol. 3, no. 11, pp. 2065–2086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheng, F., Shen, Y., Mohanasundaram, P., et al., Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-β-Slug signaling, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 30, pp. E4320–E4327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi, Y.H., Burdick, M.D., Strieter, B.A., et al., CXCR4, but not CXCR7, discriminates metastatic behavior in non-small cell lung cancer cells, Mol. Cancer Res., 2014, vol. 12, no. 1, pp. 38–47.

    Article  CAS  PubMed  Google Scholar 

  11. Choi, J., Selmi, C., Leung, P.S., et al., Chemokine and chemokine receptors in autoimmunity: the case of primary biliary cholangitis, Expert Rev. Clin. Immunol., 2016, vol. 12, no. 6, pp. 661–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Christen, B., Robles, V., Raya, M., et al., Regeneration and reprogramming compared, BMC Biol., 2010, vol. 8, p. 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Clarke, C.N., Kuboki, S., Tevar, A., et al., CXC chemokines play a critical role in liver injury, recovery, and regeneration, Am. J. Surg., 2009, vol. 198, no. 3, pp. 415–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cohen, N.J.A.Z., Amphibian Transplantation Reactions: A Review, Am. Zool., 1971, vol. 11, no. 2, pp. 193–205.

  15. Costantini, C., Micheletti, A., Calzetti, F., et al., Neutrophil activation and survival are modulated by interaction with NK cells, Int. Immunol., 2010, vol. 22, no. 10, pp. 827–838.

    Article  CAS  PubMed  Google Scholar 

  16. Dreymueller, D., Denecke, B., Ludwig, A., et al., Embryonic stem cell-derived M2-like macrophages delay cutaneous wound healing, Wound Repair Regen., 2013, vol. 21, no. 1, pp. 44–54.

    Article  PubMed  Google Scholar 

  17. Feng, G., Hao, D., and Chai, J., Processing of CXCL12 impedes the recruitment of endothelial progenitor cells in diabetic wound healing, FEBS J., 2014, vol. 281, no. 22, pp. 5054–5062.

    Article  CAS  PubMed  Google Scholar 

  18. Frangogiannis, N.G., Matricellular proteins in cardiac adaptation and disease, Physiol. Rev., 2012, vol. 92, no. 2, pp. 635–688.

    Article  CAS  PubMed  Google Scholar 

  19. Freichel, M., Berlin, M., Schürger, A., et al., TRP channels in the heart, in Neurobiology of TRP Channels, Emir, T.L.R., Ed., Frontiers in Neuroscience, Boca Raton, FL: CRC Press/Taylor and Francis, 2017, pp. 149–185.

  20. Geering, B., Stoeckle, C., Conus, S., et al., Living and dying for inflammation: neutrophils, eosinophils, basophils, Trends Immunol., 2013, vol. 34, no. 8, pp. 398–409.

    Article  CAS  PubMed  Google Scholar 

  21. Ghigo, A., Franco, I., Morello, F., et al., Myocyte signalling in leucocyte recruitment to the heart, Cardiovasc. Res., 2014, vol. 102, no. 2, pp. 270–280.

    Article  CAS  PubMed  Google Scholar 

  22. Ghosh, S., Thorogood, P., and Ferretti, P., Regenerative capability of upper and lower jaws in the newt, Int. J. Dev. Biol., 1994, vol. 38, no. 3, pp. 479–490.

    CAS  PubMed  Google Scholar 

  23. Godwin, J.W. and Brockes, J.P., Regeneration, tissue injury and the immune response, J. Anat., 2006, vol. 209, no. 4, pp. 423–432.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Godwin, J.W. and Rosenthal, N., Scar-free wound healing and regeneration in amphibians: immunological influences on regenerative success, Differentiation, 2014, vol. 87, no. 1–2, pp. 66–75.

    Article  CAS  PubMed  Google Scholar 

  25. Godwin, J.W., Pinto, A.R., and Rosenthal, N.A., Macrophages are required for adult salamander limb regeneration, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 23, pp. 9415–9420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Godwin, J.W., Debuque, R., Salimova, E., et al., Heart regeneration in the salamander relies on macrophage-mediated control of fibroblast activation and the extracellular landscape, NPJ Regen. Med., 2017, vol. 2, pp. 1–11. https://doi.org/10.1038/s41536-017-0027-y

    Article  Google Scholar 

  27. Goncharova, L.B. and Tarakanov, A.O., Why chemokines are cytokines while their receptors are not cytokine ones?, Curr. Med. Chem., 2008, vol. 15, no. 13, pp. 1297–1304.

    Article  CAS  PubMed  Google Scholar 

  28. Griffith, J.W., Sokol, C.L., and Luster, A.D., Chemokines and chemokine receptors: positioning cells for host defense and immunity, Annu. Rev. Immunol., 2014, vol. 32, pp. 659–702.

    Article  CAS  PubMed  Google Scholar 

  29. Grymula, K., Tarnowski, M., Wysoczynski, M., et al., Overlapping and distinct role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 axes in regulating metastatic behavior of human rhabdomyosarcomas, Int. J. Cancer, 2010, vol. 127, no. 11, pp. 2554–2568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guo, S. and Dipietro, L.A., Factors affecting wound healing, J. Dent. Res., 2010, vol. 89, no. 3, pp. 219–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haas, B.J. and Whited, J.L., Advances in decoding axolotl limb regeneration, Trends Genet., 2017, vol. 33, no. 8, pp. 553–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hardtke, S., Ohl, L., and Förster, R., Balanced expression of CXCR5 and CCR7 on follicular T helper cells determines their transient positioning to lymph node follicles and is essential for efficient B-cell help, Blood, 2005, vol. 106, no. 6, pp. 1924–1931.

    Article  CAS  PubMed  Google Scholar 

  33. Harty, M., Neff, A.W., King, M.W., et al., Regeneration or scarring: an immunologic perspective, Dev. Dyn., 2003, vol. 226, no. 2, pp. 268–279.

    Article  PubMed  Google Scholar 

  34. Heijink, I.H., Pouwels, S.D., Leijendekker, C., et al., Cigarette smoke-induced damage-associated molecular pattern release from necrotic neutrophils triggers proinflammatory mediator release, Am. J. Respir. Cell Mol. Biol., 2015, vol. 52, no. 5, pp. 554–562.

    Article  CAS  PubMed  Google Scholar 

  35. Heissig, B., Nishida, C., Tashiro, Y., et al., Role of neutrophil-derived matrix metalloproteinase-9 in tissue regeneration, Histol. Histopathol., 2010, vol. 25, no. 6, pp. 765–770.

    CAS  PubMed  Google Scholar 

  36. Henry, J.J. and Tsonis, P.A., Molecular and cellular aspects of amphibian lens regeneration, Prog. Retin. Eye Res., 2010, vol. 29, no. 6, pp. 543–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Herter, J. and Zarbock, A., Integrin regulation during leukocyte recruitment, J. Immunol., 2013, vol. 190, no. 9, pp. 4451–4457.

    Article  CAS  PubMed  Google Scholar 

  38. Janssens, R., Struyf, S., and Proost, P., The unique structural and functional features of CXCL12, Cell Mol. Immunol., 2018, vol. 15, no. 4, pp. 299–311.

    Article  CAS  PubMed  Google Scholar 

  39. Jewett, A., Tseng, H.C., Arasteh, A., et al., Natural killer cells preferentially target cancer stem cells; role of monocytes in protection against NK cell mediated lysis of cancer stem cells, Curr. Drug Deliv., 2012, vol. 9, no. 1, pp. 5–16.

    Article  CAS  PubMed  Google Scholar 

  40. Kaufman, J., Ferrone, S., Flajnik, M., et al., MHC-like molecules in some nonmammalian vertebrates can be detected by some cross-reactive monoclonal antibodies, J. Immunol., 1990, vol. 144, no. 6, pp. 2273–2280.

    CAS  PubMed  Google Scholar 

  41. Kaufman, J., Völk, H., and Wallny, H.J., A “minimal essential Mhc” and an “unrecognized Mhc”: two extremes in selection for polymorphism, Immunol. Rev., 1995, vol. 143, pp. 63–88.

    Article  CAS  PubMed  Google Scholar 

  42. Keeley, E.C., Mehrad, B., and Strieter, R.M., Chemokines as mediators of tumor angiogenesis and neovascularization, Exp. Cell Res., 2011, vol. 317, no. 5, pp. 685–690.

    Article  CAS  PubMed  Google Scholar 

  43. Keyes, K.T., Ye, Y., Lin, Y., et al., Resolvin E1 protects the rat heart against reperfusion injury, Am. J. Physiol. Heart Circ. Physiol., 2010, vol. 299, no. 1, pp. H153–H164.

    Article  CAS  PubMed  Google Scholar 

  44. Koniski, A.D. and Cohen, N., Reproducible proliferative responses of salamander (Ambystoma mexicanum) lymphocytes cultured with mitogens in serum-free medium, Dev. Comp. Immunol., 1992, vol. 16, no. 6, pp. 441–451.

    Article  CAS  PubMed  Google Scholar 

  45. Korbecki, J., Grochans, S., Gutowska, I., et al., CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands, Int. J. Mol. Sci., 2020, vol. 21, no. 20.

  46. Laing, K.J. and Secombes, C.J., Chemokines, Dev. Comp. Immunol., 2004, vol. 28, no. 5, pp. 443–460.

    Article  CAS  PubMed  Google Scholar 

  47. Lee, J.S., Frevert, C.W., Wurfel, M.M., et al., Duffy antigen facilitates movement of chemokine across the endothelium in vitro and promotes neutrophil transmigration in vitro and in vivo, J. Immunol., 2003, vol. 170, no. 10, pp. 5244–5251.

    Article  CAS  PubMed  Google Scholar 

  48. Lee, S.J., Namkoong, S., Kim, Y.M., et al., Fractalkine stimulates angiogenesis by activating the Raf-1/MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways, Am. J. Physiol. Heart Circ. Physiol., 2006, vol. 291, no. 6, pp. H2836–H2846.

    Article  CAS  PubMed  Google Scholar 

  49. Leigh, N.D., Dunlap, G.S., Johnson, K., et al., Transcriptomic landscape of the blastema niche in regenerating adult axolotl limbs at single-cell resolution, Nat. Commun., 2018, vol. 9, no. 1, p. 5153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lévesque, M., Gatien, S., Finnson, K., et al., Transforming growth factor: beta signaling is essential for limb regeneration in axolotls, PLoS One, 2007, vol. 2, no. 11, article ID e1227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Li, L., Yan, B., Shi, Y.Q., et al., Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration, J. Biol. Chem., 2012, vol. 287, no. 30, pp. 25353–25360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, M., Sun, X., Zhao, J., et al., CCL5 deficiency promotes liver repair by improving inflammation resolution and liver regeneration through M2 macrophage polarization, Cell Mol. Immunol., 2020, vol. 17, no. 7, pp. 753–764.

    Article  CAS  PubMed  Google Scholar 

  53. Liekens, S., Schols, D., and Hatse, S., CXCL12–CXCR4 axis in angiogenesis, metastasis and stem cell mobilization, Curr. Pharm. Des., 2010, vol. 16, no. 35, pp. 3903–3920.

    Article  CAS  PubMed  Google Scholar 

  54. Liu, W., Liu, D., Zheng, J., et al., Annulus fibrosus cells express and utilize C-C chemokine receptor 5 (CCR5) for migration, Spine J., 2017, vol. 17, no. 5, pp. 720–726.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lounsbury, N., Advances in CXCR7 modulators, Pharmaceuticals (Basel), 2020, vol. 13, no. 2.

  56. Luker, K.E., Steele, J.M., Mihalko, L.A., et al., Constitutive and chemokine-dependent internalization and recycling of CXCR7 in breast cancer cells to degrade chemokine ligands, Oncogene, 2010, vol. 29, no. 32, pp. 4599–4610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mahdavian Delavary, B., van der Veer, W.M., van Egmond, M., et al., Macrophages in skin injury and repair, Immunobiology, 2011, vol. 216, no. 7, pp. 753–762.

    Article  PubMed  CAS  Google Scholar 

  58. Mandal, P.K., Biswas, S., Mandal, G., et al., CCL2 conditionally determines CCL22-dependent Th2-accumulation during TGF-β-induced breast cancer progression, Immunobiology, 2018, vol. 223, no. 2, pp. 151–161.

    Article  CAS  PubMed  Google Scholar 

  59. Mantovani, A., Sica, A., Sozzani, S., et al., The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol., 2004, vol. 25, no. 12, pp. 677–686.

    Article  CAS  PubMed  Google Scholar 

  60. McCusker, C., Bryant, S.V., and Gardiner, D.M., The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods, Regeneration (Oxf.), 2015, vol. 2, no. 2, pp. 54–71.

    Article  Google Scholar 

  61. McHedlishvili, L., Mazurov, V., Grassme, K.S., et al., Reconstitution of the central and peripheral nervous system during salamander tail regeneration, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 34, pp. E2258–E2266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mescher, A.L. and Neff, A.W., Regenerative capacity and the developing immune system, Adv. Biochem. Eng. Biotechnol., 2005, vol. 93, pp. 39–66.

    CAS  PubMed  Google Scholar 

  63. Murawala, P., Tanaka, E.M., and Currie, J.D., Regeneration: the ultimate example of wound healing, Semin. Cell Dev. Biol., 2012, vol. 23, no. 9, pp. 954–962.

    Article  CAS  PubMed  Google Scholar 

  64. Naumann, U., Cameroni, E., Pruenster, M., et al., CXCR7 functions as a scavenger for CXCL12 and CXCL11, PLoS One, 2010, vol. 5, no. 2, article ID e9175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Neves, J., Zhu, J., Sousa-Victor, P., et al., Immune modulation by MANF promotes tissue repair and regenerative success in the retina, Science, 2016, vol. 353, no. 6294, article ID aaf3646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Nibbs, R., Graham, G., and Rot, A. Chemokines on the move: control by the chemokine “interceptors” Duffy blood group antigen and D6, Semin. Immunol., 2003, vol. 15, no. 5, pp. 287–294.

    Article  CAS  PubMed  Google Scholar 

  67. Palmqvist, C., Wardlaw, A.J., and Bradding, P., Chemokines and their receptors as potential targets for the treatment of asthma, Br. J. Pharmacol., 2007, vol. 151, no. 6, pp. 725–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Palomino, D.C. and Marti, L.C., Chemokines and immunity, Einstein (Sao Paulo), 2015, vol. 13, no. 3, pp. 469–473.

    Article  Google Scholar 

  69. Pan, T., Wang, X., Fa Ng, T., et al., The changes in skeletal muscle ultrasructure and MGF during and after exhaustive exercise in rat, Chin. J. Sports Med., 2012.

  70. Park, J.E. and Barbul, A., Understanding the role of immune regulation in wound healing, Am. J. Surg., 2004, vol. 187, no. 5a, pp. 11s–16s.

    Article  CAS  PubMed  Google Scholar 

  71. Payzin-Dogru, D. and Whited, J.L. An integrative framework for salamander and mouse limb regeneration, Int. J. Dev. Biol., 2018, vol. 62, nos. 6–8, pp. 393–402.

    Article  CAS  PubMed  Google Scholar 

  72. Pizza, F. X., Peterson, J.M., Baas, J.H., et al., Neutrophils contribute to muscle injury and impair its resolution after lengthening contractions in mice, J. Physiol., 2005, vol. 562, part 3, pp. 899–913.

    Article  CAS  PubMed  Google Scholar 

  73. Prabhu, S.D. and Frangogiannis, N.G., The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis, Circ. Res., 2016, vol. 119, no. 1, pp. 91–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Proudfoot, A.E., Handel, T.M., Johnson, Z., et al., Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, no. 4, pp. 1885–1890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Purushothaman, S., Elewa, A., and Seifert, A.W., Fgf-signaling is compartmentalized within the mesenchyme and controls proliferation during salamander limb development, Elife, 2019, vol. 8.

  76. Qi, M. and Xin, S., FGF signaling contributes to atherosclerosis by enhancing the inflammatory response in vascular smooth muscle cells, Mol. Med. Rep., 2019, vol. 20, no. 1, pp. 162–170.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rajagopal, S., Kim, J., Ahn, S., et al., Beta-arrestin but not G protein-mediated signaling by the “decoy” receptor CXCR7, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, no. 2, pp. 628–632.

    Article  PubMed  Google Scholar 

  78. Ridiandries, A., Tan, J.T., and Bursill, C.A., The role of CC-chemokines in the regulation of angiogenesis, Int. J. Mol. Sci., 2016, vol. 17, no. 11.

  79. Ridiandries, A., Bursill, C., and Tan, J., Broad-spectrum inhibition of the CC-chemokine class improves wound healing and wound angiogenesis, Int. J. Mol. Sci., 2017, vol. 18, no. 1.

  80. Ridiandries, A., Tan, J.T.M., and Bursill, C.A., The role of chemokines in wound healing, Int. J. Mol. Sci., 2018, vol. 19, no. 10.

  81. Riise, R.E., Bernson, E., Aurelius, J., et al., TLR-stimulated neutrophils instruct NK cells to trigger dendritic cell maturation and promote adaptive T cell responses, J. Immunol., 2015, vol. 195, no. 3, pp. 1121–1128.

    Article  CAS  PubMed  Google Scholar 

  82. Roberson, S. and Halpern, M.E., Convergence of signaling pathways underlying habenular formation and axonal outgrowth in zebrafish, Development, 2017, vol. 144, no. 14, pp. 2652–2662.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Rodero, M.P. and Khosrotehrani, K., Skin wound healing modulation by macrophages, Int. J. Clin. Exp. Pathol., 2010, vol. 3, no. 7, pp. 643–653.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Rodgers, A.K., Smith, J.J., and Voss, S.R., Identification of immune and non-immune cells in regenerating axolotl limbs by single-cell sequencing, Exp. Cell Res., 2020, vol. 394, no. 2, article ID 112149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Romagnani, P., Lasagni, L., Annunziato, F., et al., CXC chemokines: the regulatory link between inflammation and angiogenesis, Trends Immunol., 2004, vol. 25, no. 4, pp. 201–209.

    Article  CAS  PubMed  Google Scholar 

  86. Ruffell, D., Mourkioti, F., Gambardella, A., et al., A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 41, pp. 17475–17480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Russo, R.C., Garcia, C.C., Teixeira, M.M., et al., The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases, Expert Rev. Clin. Immunol., 2014, vol. 10, no. 5, pp. 593–619.

    Article  CAS  PubMed  Google Scholar 

  88. Singer, A.J. and Clark, R.A., Cutaneous wound healing, N. Engl. J. Med., 1999, vol. 341, no. 10, pp. 738–746.

    Article  CAS  PubMed  Google Scholar 

  89. Singh, M.V., Swaminathan, P.D., Luczak, E.D., et al., MyD88 mediated inflammatory signaling leads to CaMKII oxidation, cardiac hypertrophy and death after myocardial infarction, J. Mol. Cell Cardiol., 2012, vol. 52, no. 5, pp. 1135–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Singh, B.N., Weaver, C.V., Garry, M.G., et al., Hedgehog and Wnt signaling pathways regulate tail regeneration, Stem Cells Dev., 2018, vol. 27, no. 20, pp. 1426–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sommer, F., Torraca, V., and Meijer, A.H., Chemokine receptors and phagocyte biology in zebrafish, Front. Immunol., 2020, vol. 11, p. 325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stålman, A., Bring, D., and Ackermann, P.W., Chemokine expression of CCL2, CCL3, CCL5 and CXCL10 during early inflammatory tendon healing precedes nerve regeneration: an immunohistochemical study in the rat, Knee Surg. Sports Traumatol. Arthrosc., 2015, vol. 23, no. 9, pp. 2682–2689.

    Article  PubMed  Google Scholar 

  93. Sugimoto, M.A., Sousa, L.P., Pinho, V., et al., Resolution of inflammation: what controls its onset?, Front. Immunol., 2016, vol. 7, p. 160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Tataroglu, O., Zhao, X., Busza, A., et al., Retraction notice to: calcium and SOL protease mediate temperature resetting of circadian clocks, Cell, 2017, vol. 171, no. 1, p. 256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Teller, P. and White, T.K., The physiology of wound healing: injury through maturation, Surg. Clin. North Am., 2009, vol. 89, no. 3, pp. 599–610.

    Article  PubMed  Google Scholar 

  96. Toumi, H., F’Guyer, S., and Best, T.M., The role of neutrophils in injury and repair following muscle stretch, J. Anat., 2006, vol. 208, no. 4, pp. 459–470.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Tournefier, A., Laurens, V., Chapusot, C., et al., Structure of MHC class I and class II cDNAs and possible immunodeficiency linked to class II expression in the Mexican axolotl, Immunol. Rev., 1998, vol. 166, pp. 259–277.

    Article  CAS  PubMed  Google Scholar 

  98. Tsai, S.L., Baselga-Garriga, C., and Melton, D.A., Blastemal progenitors modulate immune signaling during early limb regeneration, Development, 2019, vol. 146, no. 1.

  99. Vågesjö, E., Öhnstedt, E., Mortier, A., et al., Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria, Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 8, pp. 1895–1900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Walker, S.E., Nottrodt, R., Maddalena, L., et al., Retinoid X receptor α downregulation is required for tail and caudal spinal cord regeneration in the adult newt, Neural. Regen. Res., 2018, vol. 13, no. 6, pp. 1036–1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, J., Neutrophils in tissue injury and repair, Cell Tissue Res., 2018, vol. 371, no. 3, pp. 531–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Watts, A.O., Verkaar, F., van der Lee, M.M., et al., β-Arrestin recruitment and G protein signaling by the atypical human chemokine decoy receptor CCX-CKR, J. Biol. Chem., 2013, vol. 288, no. 10, pp. 7169–7181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wood, S., Jayaraman, V., Huelsmann, E.J., et al., Pro-inflammatory chemokine CCL2 (MCP-1) promotes healing in diabetic wounds by restoring the macrophage response, PLoS One, 2014, vol. 9, no. 3, article ID e91574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Xue, M. and Jackson, C.J., Extracellular matrix reorganization during wound healing and its impact on abnormal scarring, Adv. Wound Care (New Rochelle), 2015, vol. 4, no. 3, pp. 119–136.

    Article  Google Scholar 

  105. Yan, X., Anzai, A., Katsumata, Y., et al., Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction, J. Mol. Cell Cardiol., 2013, vol. 62, pp. 24–35.

    Article  CAS  PubMed  Google Scholar 

  106. Yang, Z., Sharma, A.K., Linden, J., et al., CD4+ T lymphocytes mediate acute pulmonary ischemia-reperfusion injury, J. Thorac. Cardiovasc. Surg., 2009, vol. 137, no. 3, pp. 695–702; discussion 702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, M., Qiu, L., Zhang, Y., et al., CXCL12 enhances angiogenesis through CXCR7 activation in human umbilical vein endothelial cells, Sci. Rep., 2017, vol. 7, no. 1, p. 8289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Zheng, H., Functions of chemokines and their receptors, Immunol. J., 2004.

  109. Zhou, T., Li, N., Jin, Y., et al., Chemokine C–C motif ligand 33 is a key regulator of teleost fish barbel development, Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 22, pp. E5018–E5027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhou, Z., Zeiter, S., Schmid, T., et al., Effect of the CCL5-releasing fibrin gel for intervertebral disc regeneration, Cartilage, 2020, vol. 11, no. 2, pp. 169–180.

    Article  CAS  PubMed  Google Scholar 

  111. Zlotnik, A. and Yoshie, O., Chemokines: a new classification system and their role in immunity, Immunity, 2000, vol. 12, no. 2, pp. 121–127.

    Article  CAS  PubMed  Google Scholar 

  112. Zlotnik, A., Burkhardt, A. M., and Homey, B., Homeostatic chemokine receptors and organ-specific metastasis, Nat. Rev. Immunol., 2011, vol. 11, no. 9, pp. 597–606.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of P. R. China (no. 31670996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Xie.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mengli Xu, Su, J., Yue, Z. et al. Inflammation and Limb Regeneration: The Role of the Chemokines. Russ J Dev Biol 53, 180–191 (2022). https://doi.org/10.1134/S1062360422030055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360422030055

Keywords:

Navigation