Skip to main content
Log in

Control Levels of FISH-Registered Translocations: Review of the Literature

  • RADIATION CYTOGENETICS
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract—A review of the information published in the scientific literature and relating to estimation of spontaneous levels of translocations detected by various methods of FISH-staining of chromosomes in the human peripheral blood lymphocyte cultures is presented. Various authors using single, two, and three-color variants are generally indicated by a significant increase in the frequencies of these chromosome aberrations with an increase in the donor age and the absence of the influence of gender. An increase in the translocation yield was recorded for persistent smokers and, apparently, alcoholics. It was recognized as impossible to divide the effect of the race and the territorial position of research laboratories. At the same time, countries can differ significantly in terms of the lifestyle of the population, the background impact of ionizing radiation, and the medical services used, in particular, in terms of the volume of implemented radiation diagnostic research. It limits the use of spontaneous damage levels of chromosomes determined by international studies and indicates the desirability to have relevant data for individual populations. At the same time, it is necessary to state the limitation of similar information about the frequencies of translocations detected with multicolored FISH-staining in the control groups of people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Darroudi, F., Use of FISH-translocations analyses for retrospective biological dosimetry: how stable are stable chromosome aberrations?, Radiat. Prot. Dosim., 2000, vol. 88, no. 1, pp. 101–109. https://doi.org/10.1093/oxfordjournals.rpd.a033013

    Article  Google Scholar 

  2. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies, Vienna: IAEA, Vienna, 2011.

  3. Ainsbury, E.A., Bakhanova, E., Barquinero, J.F., et al., Review of retrospective dosimetry techniques for external ionising radiation exposures, Radiat. Prot. Dosim., 2011, vol. 147, no. 4, pp. 573–592. https://doi.org/10.1093/rpd/ncq499

    Article  CAS  Google Scholar 

  4. Popp, S. and Cremer, T., Development of a biological dosimeter for translocation scoring based on two-color fluorescence in situ hybridization of chromosome subsets, J. Radiat. Res., 1992, vol. 33, suppl., pp. 61–70. https://doi.org/10.1269/jrr.33.Suppl_1.61

    Article  PubMed  Google Scholar 

  5. Tanaka, K., Popp, S., Fischer, C., et al., Chromosome aberration analysis in atomic bomb survivors and Thorotrast patients using two- and three-colour chromosome painting of chromosomal subsets, Int. J. Radiat. Biol., 1996, vol. 70, no. 1, pp. 95–108. https://doi.org/10.1080/095530096145373

    Article  CAS  PubMed  Google Scholar 

  6. Sommer, S., Buraczewska, I., Wojewodzka, M., et al., The radiation sensitivity of human chromosomes 2, 8 and 14 in peripheral blood lymphocytes of seven donors, Int. J. Radiat. Biol., 2005, vol. 81, no. 10, pp. 741–749. https://doi.org/10.1080/09553000500499381

    Article  CAS  PubMed  Google Scholar 

  7. Distel, L., Keller, U., and Neubauer, S., Three-color FISH for the detection of individual radiosensitivity, in Fluorescence In Situ Hybridization (FISH)—Application Guide, Liehr, T., Ed., Berlin-Heidelberg: Springer-Verlag, 2009, pp. 231–241.

    Google Scholar 

  8. Speicher, M.R., Ballard, S.G., and Ward, D.C., Karyotyping human chromosomes by combinatorial multi-fluor FISH, Nat. Genet., 1996, vol. 12, no. 4, pp. 368–375. https://doi.org/10.1038/ng0496-368

    Article  CAS  PubMed  Google Scholar 

  9. Anderson, R.M., Stevens, D.L., and Goodhead, D.T., M-FISH analysis shows that complex chromosome aberrations induced by α-particle tracks are cumulative products of localized rearrangements, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, no. 19, pp. 12167–12172. https://doi.org/10.1073/pnas.182426799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pressl, S., Romm, H., Ganguly, B.B., and Stephan, G., Experience with FISH-detected translocations as an indicator in retrospective dose reconstructions, Radiat. Prot. Dosim., 2000, vol. 88, no. 1, pp. 45–49. https://doi.org/10.1093/oxfordjournals.rpd.a033018

    Article  Google Scholar 

  11. Vorobtsova, I.E. and Semenov, A.V., Complex cytogenetic characterization of persons affected by the Chernobyl accident, Radiats. Biol. Radioecol., 2006, vol. 46, no. 2, pp. 140–152.

    CAS  PubMed  Google Scholar 

  12. Sorokine-Durm, I., Whitehouse, C., and Edwards, A., The variability of translocation yields amongst control populations, Radiat. Prot. Dosim., 2000, vol. 88, no. 1, pp. 93–99. https://doi.org/10.1093/oxfordjournals.rpd.a033026

    Article  Google Scholar 

  13. Whitehouse, C.A., Edwards, A.A., Tawn, E.J., et al., Translocation yields in peripheral blood lymphocytes from control populations, Int. J. Radiat. Biol., 2005, vol. 81, no. 2, pp. 139–145. https://doi.org/10.1080/09553000500103082

    Article  CAS  PubMed  Google Scholar 

  14. Bothwell, A.M., Whitehouse, C.A., and Tawn, E.J., The application of FISH for chromosome aberration analysis in relation to radiation exposure, Radiat. Prot. Dosim., 2000, vol. 8, no. 1, pp. 7–14. https://doi.org/10.1093/oxfordjournals.rpd.a033023

    Article  Google Scholar 

  15. Jones, I.M., Galick, H., Kato, P., et al., Three somatic genetic biomarkers and covariates in radiation-exposed Russian cleanup workers of the Chernobyl nuclear reactor 6–13 years after exposure, Radiat. Res., 2002, vol. 158, no. 4, pp. 424–442. https://doi.org/10.1667/0033-7587(2002)158[0424:tsgbac]2.0.co;2

    Article  CAS  PubMed  Google Scholar 

  16. Tucker, J.D., Evaluation of chromosome translocations by FISH for radiation biodosimetry: a view from one laboratory, Radiat. Prot. Dosim., 2000, vol. 88, no. 1, pp. 87–92. https://doi.org/10.1093/oxfordjournals.rpd.a033025

    Article  Google Scholar 

  17. Sigurdson, A.J., Ha, M., Hauptmann, M., et al., International study of factors affecting human chromosome translocations, Mutat. Res., 2008, vol. 652, no. 2, pp. 112–121. https://doi.org/10.1016/j.mrgentox.2008.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Beinke, C. and Meineke, V., High potential for methodical improvements of FISH-based translocation analysis for retrospective radiation biodosimetry, Health Phys., 2012, vol. 103, no. 2, pp. 127–132. https://doi.org/10.1097/HP.0b013e31824645fb

    Article  CAS  PubMed  Google Scholar 

  19. Grégoire, E., Roy, L., Buard, V., et al., Twenty years of FISH-based translocation analysis for retrospective ionizing radiation biodosimetry, Int. J. Radiat. Biol., 2018, vol. 94, no. 3, pp. 248–258. https://doi.org/10.1080/09553002.2018.1427903

    Article  CAS  PubMed  Google Scholar 

  20. Bocskay, K.A., Tang, D., Orjuela, M.A., et al., Chromosomal aberrations in cord blood are associated with prenatal exposure to carcinogenic polycyclic aromatic hydrocarbons, Cancer Epidemiol. Biomarkers Prev, 2005, vol. 14, no. 2, pp. 506–511. https://doi.org/10.1158/1055-9965.EPI-04-0566

    Article  CAS  PubMed  Google Scholar 

  21. Hristova, R., Hadjidekova, V., Grigorova, M., et al., Chromosome analysis of nuclear power plant workers using fluorescence in situ hybridization and Giemsa assay, J. Radiat. Res., 2013, vol. 54, no. 5, pp. 832–839. https://doi.org/10.1093/jrr/rrt018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hille, A., Hofman-Hüther, H., Kühnle, E., et al., Spontaneous and radiation-induced chromosomal instability and persistence of chromosome aberrations after radiotherapy in lymphocytes from prostate cancer patients, Radiat. Environ. Biophys., 2010, vol. 49, no. 1, pp. 27–37. https://doi.org/10.1007/s00411-009-0244-x

    Article  PubMed  Google Scholar 

  23. Badr, F.M. and Hussain, F.H., Chromosomal aberrations in chronic male alcoholics, Alcohol.: Clin. Exp. Res., 1982, vol. 6, no. 1, pp. 122–129. https://doi.org/10.1111/j.1530-0277.1982.tb05390.x

    Article  CAS  PubMed  Google Scholar 

  24. Burim, R.V., Canalle, R., Takahashi, C.S., et al., Clastogenic effect of ethanol in chronic and abstinent alcoholics, Mutat. Res., 2004, vol. 560, no. 2, pp. 187–198. https://doi.org/10.1016/j.mrgentox.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  25. Van Diemen, P.C., Maasdam, D., Vermeulen, S., et al., Influence of smoking habits on the frequencies of structural and numerical chromosomal aberrations in human peripheral blood lymphocytes using the fluorescence in situ hybridization (FISH) technique, Mutagenesis, 1995, vol. 10, no. 6, pp. 487–495. https://doi.org/10.1093/mutage/10.6.487

    Article  CAS  PubMed  Google Scholar 

  26. Distel, L.V.R., Neubauer, S., Keller, U., et al., Individual differences in chromosomal aberrations after in vitro irradiation of cells from healthy individuals, cancer and cancer susceptibility syndrome patients, Radiother. Oncol., 2006, vol. 81, no. 3, pp. 257–263. https://doi.org/10.1016/j.radonc.2006.10.012

    Article  CAS  PubMed  Google Scholar 

  27. Cornforth, M.N., Anur, P., Wang, N., et al., Molecular cytogenetics guides massively parallel sequencing of a radiation-induced chromosome translocation in human cells, Radiat. Res., 2018, vol. 190, no. 1, pp. 88–97. https://doi.org/10.1667/RR15053.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Talan, O.A., Shemetun, E.V., Kurinnyi, D.A., and Pilinskaya, M.A., Cytogenetic examination of individuals of different ages performed using differential G-banding of metaphase chromosomes, in Faktori eksperimental’noï evolyutsiï organizmiv: Zb. nauk. pr. (Factors of Experimental Evolution of Organisms: Collection of Scientific Papers), 2014, vol. 14, pp. 229–231.

  29. Wojda, A., Zietkiewicz, E., Mossakowska, M., et al., Correlation between the level of cytogenetic aberrations in cultured human lymphocytes and the age and gender of donors, J. Gerontol., 2006, vol. 61, no. 8, pp. 763–772. https://doi.org/10.1093/gerona/61.8.763

    Article  Google Scholar 

  30. Osovets, S.V., Sotnik, N.V., Meineke, V., et al., Threshold limits for biological indication of prolonged radiation exposure using mFISH, Health Phys., 2014, vol. 106, no. 6, pp. 677–681. https://doi.org/10.1097/HP.0000000000000057

    Article  CAS  PubMed  Google Scholar 

  31. Sotnik, N.V., Osovets, S.V., Scherthan, H., and Azizova, T.V., mFISH analysis of chromosome aberrations in workers occupationally exposed to mixed radiation, Radiat. Environ. Biophys, 2014, vol. 53, no. 2, pp. 347–354. https://doi.org/10.1007/s00411-014-0536-7

    Article  CAS  PubMed  Google Scholar 

  32. Wahab, M.A., Nickless, E.M., Najar-M’Kacher R., et al., Elevated chromosome translocation frequencies in New Zealand nuclear test veterans, Cytogenet. Genome Res., 2008, vol. 121, no. 2, pp. 79–87. https://doi.org/10.1159/000125832

    Article  CAS  PubMed  Google Scholar 

  33. Hande, M.P., Azizova, T.V., Burak, L.E., et al., Complex chromosome aberrations persist in individuals many years after occupational exposure to densely ionizing radiation: an mFISH study, Genes, Chromosomes, Cancer, 2005, vol. 44, no. 1, pp. 1–9. https://doi.org/10.1002/gcc.20217

    Article  CAS  PubMed  Google Scholar 

  34. Obe, G., Pfeiffer, P., Savage, J.R.K., et al., Chromosomal aberrations: formation, identification and distribution, Mutat. Res., 2002, vol. 504, nos. 1–2, pp. 17–36. https://doi.org/10.1016/s0027-5107(02)00076-3

    Article  CAS  PubMed  Google Scholar 

  35. Pouzolet, F. and Roch-Lefevre, S., Giraudet, A.L., et al., Monitoring translocation by M-FISH and three-color FISH painting techniques: a study of two radiotherapy patients, J. Radiat. Res., 2007, vol. 48, no. 5, pp. 425–434. https://doi.org/10.1269/jrr.07013

    Article  CAS  Google Scholar 

  36. Paz, N., Hartel, C., Nasonova, E., et al., Chromosome aberrations in lymphocytes of patients undergoing radon spa therapy: an explorative mFISH study, Int. J. Environ. Res. Publ. Health, 2021, vol. 18, no. 10757. https://doi.org/10.3390/ijerph182010757

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Nugis.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomonosova, E.E., Nugis, V.Y., Nikitina, V.A. et al. Control Levels of FISH-Registered Translocations: Review of the Literature. Biol Bull Russ Acad Sci 50, 2971–2978 (2023). https://doi.org/10.1134/S1062359023110122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023110122

Keywords:

Navigation