Skip to main content
Log in

X-Ray Fluorescence Spectrometry: Current Status and Prospects of Development

  • REVIEWS
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

This review covers characteristics and potential applications of various versions of the X-ray fluorescence (XRF) spectrometry for analyzing both liquid and solid samples. Particular emphasis is given to research published within the past decade, as information on XRF’s previous applications can be found in earlier reviews and monographs. The results of experiments on determining fundamental atomic parameters, such as mass absorption coefficients, fluorescence yields, transition probabilities for the emission of specific lines of elements, and nonradiative transition probabilities. Additionally, the review addresses the capabilities of newly designed models of XRF spectrometers developed in recent years. The application of total reflection X-ray fluorescence spectrometry for diverse samples is examined in greater detail. Furthermore, the document presents data on the utilization of XRF in investigating nanoparticles of some typical materials. These particles exhibit qualitatively novel properties and have become a focal point of nanotechnology, an area rapidly developing in the last few decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ignatova, Yu.A., Eritenko, A.N., Revenko, A.G., and Tsvetyanskii, A.L., Anal. Kontrol’, 2011, vol. 15, no. 2, p. 126.

    Google Scholar 

  2. Revenko, A.G., Anal. Kontrol’, 2011, vol. 15, no. 4, p. 370.

    Google Scholar 

  3. Alov, N.V., Inorg. Mater., 2011, vol. 47, no. 14, p. 1487. https://doi.org/10.1134/S0020168511140020

    Article  CAS  Google Scholar 

  4. Lavrent’ev, Yu.G., Anal. Kontrol’, 2013, no. 3, p. 252.

  5. Revenko, A.G., Stand. Obraztsy, 2013, no. 4, p. 3.

  6. Revenko, A.G., Geodin. Tektonofiz., 2014, vol. 5, no. 1, p. 101. https://doi.org/10.5800/GT-2014-5-1-0119

    Article  Google Scholar 

  7. Smagunova, A.N. and Revenko, A.G., Zh. Anal. Khim., 2014, vol. 69, no. 3, p. 316. https://doi.org/10.7868/S0044450214010149

    Article  Google Scholar 

  8. Revenko, A.G. and Sharykina, D.S., Anal. Kontrol’, 2019, vol. 23, no. 1, p. 6. https://doi.org/10.15826/analitika.2019.23.1.015

    Article  Google Scholar 

  9. Shcherbakov, R.N., Priroda, 2020, no. 2, p. 54. doi

  10. Revenko, A.G., Anal. Kontrol’, 2020, vol. 24, no. 1, p. 66. https://doi.org/10.15826/analitika.2020.24.1.008

  11. Kalinin, B.D., Anal. Kontrol’, 2020, vol. 24, no. 3, p. 201. https://doi.org/10.15826/analitika.2020.24.3.005

    Article  Google Scholar 

  12. Revenko, A.G., Anal. Kontrol’, 2021, vol. 25, no. 2, p. 155. https://doi.org/10.15826/analitika.2021.25.2.006

    Article  Google Scholar 

  13. Revenko, A.G., Anal. Kontrol’, 2020, vol. 24, no. 4, p. 1. https://doi.org/10.15826/analitika.2020.24.4.005

    Article  Google Scholar 

  14. Revenko, A.G. and Pashkova, G.V., Analitika, 2022, no. 6, p. 410.

  15. Revenko, A.G., X-Ray Spectrom., 2012, vol. 41, no. 3, p. 117. https://doi.org/10.1002/xrs.2383

    Article  CAS  Google Scholar 

  16. Bosco, G.L. and James, L., TrAC, Trends Anal. Chem., 2013, vol. 45, p. 121. https://doi.org/10.1016/j.trac.2013.01.006

    Article  CAS  Google Scholar 

  17. De La Calle, I., Cabaleiro, N., Romero, V., Lavilla, I., and Bendicho, C., Spectrochim. Acta, Part B, 2013, vol. 90, p. 23. https://doi.org/10.1016/j.sab.2013.10.001

    Article  CAS  Google Scholar 

  18. Marguí, E., Zawisza, B., and Sitko, R., TrAC, Trends Anal. Chem., 2014, vol. 53, p. 73. https://doi.org/10.1016/j.trac.2013.09.009

    Article  CAS  Google Scholar 

  19. Pashkova, G.V. and Revenko, A.G., Appl. Spectrosc. Rev., 2015, vol. 50, no. 6, p. 443. https://doi.org/10.1080/05704928.2015.1010205

    Article  Google Scholar 

  20. Borgese, L., Bilo, F., Dalipi, R., Bontempi, E., and Depero, L.E., Spectrochim. Acta, Part B, 205, vol. 113, p. 1. https://doi.org/10.1016/j.sab.2015.08.001

  21. Kawai, J., in Compendium of Surface and Interface Analysis, Tokyo: Springer, 2018, p. 763. https://doi.org/10.1007/978-981-10-6156-1_122

    Book  Google Scholar 

  22. Schmeling, M., Phys. Sci. Rev., 2019, vol. 4, no. 7, p. 20170161. https://doi.org/10.1515/psr-2017-0161

    Article  Google Scholar 

  23. Ridolfi, S., in Encyclopedia of Analytical Chemistry, New York: Wiley, 2017, p. 1. https://doi.org/10.1002/9780470027318.a6803.pub3

    Book  Google Scholar 

  24. De Almeida, E., Duran, N.M., Gomes, M.H.F., Savassa, S.M., Cruz, T.N.M., Migliavacca, R.A., and de Carvalho, H.W.P., X-Ray Spectrom., 2019, vol. 48, no. 2, p. 151. https://doi.org/10.1002/xrs.3001

    Article  CAS  Google Scholar 

  25. Dhara, S. and Misra, N.L., TrAC, Trends Anal. Chem., 2019, vol. 116, p. 31. https://doi.org/10.1016/j.trac.2019.04.017

    Article  CAS  Google Scholar 

  26. Revenko, A.G., Tsvetyansky, A.L., and Eritenko, A.N., Radiat. Phys. Chem., 2022, vol. 197, p. 10157. https://doi.org/10.1016/j.radphyschem.2022.110157

    Article  CAS  Google Scholar 

  27. Revenko, A.G. and Sharykina, D.S., in X-Ray Fluorescence in Biological Sciences: Principles, Instrumentation, and Applications, Singh, V.K., Kawai, J., and Tripathi, D.K., Eds., New York: Wiley, 2022, p. 37.

    Google Scholar 

  28. Chuparina, E.V. and Revenko, A.G., in X-Ray Fluorescence in Biological Sciences: Principles, Instrumentation, and Applications, Singh, V.K., Kawai, J., and Tripathi, D.K., Eds., New York: Wiley, 2022, p. 341.

    Google Scholar 

  29. Revenko, A.G., in X-Ray Fluorescence in Biological Sciences: Principles, Instrumentation, and Applications, Singh, V.K., Kawai, J., and Tripathi, D.K., Eds., New York: Wiley, 2022, p. 475.

    Google Scholar 

  30. Singh, V.K., Sharma, N., and Singh, V.K., X-Ray Spectrom., 2022, vol. 51, no. 3, p. 304. https://doi.org/10.1002/xrs.3260

    Article  CAS  Google Scholar 

  31. Fernández-Ruiz, R., X-Ray Spectrom., 2022, vol. 51, no. 3, p. 279. https://doi.org/10.1002/xrs.3243

    Article  CAS  Google Scholar 

  32. Zhang, Y., He, Y., Zhou, W., Mo, G., Chen, H., and Xu, T., Appl. Spectrosc. Rev., 2022, vol. 58, no. 6, p. 428. https://doi.org/10.1080/05704928.2022.2130350

    Article  CAS  Google Scholar 

  33. Schramm, R., X-Ray Fluorescence Analysis: Practical and Easy, Bedburg-Hau: Fluxana, 2012.

  34. Pavlinskii, G.V., Rentgenovskaya fluorestsentsiya (X-Ray Fluorescence) Irkutsk: Irkutsk. Gos. Univ., 2013.

  35. Haschke, M., Laboratory Micro-X-Ray Fluorescence Spectroscopy: Instrumentation and Applications, Heidelberg: Springer, 2013.

    Google Scholar 

  36. Willis, J., Feather, C., and Turner, K., Guidelines for XRF Analysis: Setting up Programmes for WDXRF and EDXRF, Cape Town: James Willis Consultants, 2014.

    Google Scholar 

  37. Bakhtiarov, A.V. and Savel’ev, S.K., Rentgenofluorestsentnyi analiz mineral’nogo syr’ya (X-Ray Fluorescence Analysis of Mineral Raw Materials), St. Petersburg: St. Petersb. Gos. Univ., 2014.

  38. Oskolok, K.V., Osnovy analiticheskoi khimii. Prakticheskoe rukovodstvo po rentgenofluorestsentnomu metodu analiza (Fundamentals of Analytical Shemistry: A Practical Guide to X-Ray Fluorescence Analysis), Moscow: Maks, 2015.

  39. Klockenkamper, R. and von Bohlen, A., Total-Reflection X-ray Fluorescence Analysis and Related Methods, Hoboken: Wiley, 2015, 2nd ed.

    Google Scholar 

  40. Duimakaev, Sh., Duimakaeva, T., and Pot’kalo, M., Teoriya i sposoby rentgenospektral’nogo fluorestsentnogo analiza. Gomogennye i geterogennye sredy (Theory and Methods of X-Ray Spectral Fluorescence Analysis: Homogeneous and Heterogeneous Media), LAP, 2019.

  41. Haschke, M., Flock, J., and Haller, M., Laboratory Applications of X-Ray Fluorescence, New York: Wiley, 2021.

    Google Scholar 

  42. Kawai, J., X-Ray Spectroscopy for Chemical State Analysis, Singapore: Springer, 2023.

    Book  Google Scholar 

  43. Kto est’ kto v rossiiskoi analiticheskoi khimii. Doktora nauk (Who is Who in Russian Analytical Chemistry: Doctors of Sciences), Zolotov, Yu.A. and Shirokov,  I., Eds., Moscow: LKI, 2011.

    Google Scholar 

  44. Il’in, N.P., in Khimiki-analitiki o sebe i svoei nauke (Analytical Chemists about Themselves and Their Science), Zolotov, Yu.A. and Shaposhnik, V.A., Eds., Moscow: Librokom, 2011, p. 320.

  45. Smagunova, A.N., in Khimiki-analitiki o sebe i svoei nauke (Analytical Chemists about Themselves and Their Science), Zolotov, Yu.A. and Shaposhnik, V.A., Eds., Moscow: Librokom, 2011, p. 238.

  46. To the 90th anniversary of Roman L’vovich Barinsky, Razvedka Okhrana Nedr, 2014, no. 4, p. 61.

  47. Revenko, A.G., Anal. Kontrol’, 2015, vol. 19, no. 1, p. 94. https://doi.org/10.15826/analitika.2015.19.1.013

    Article  Google Scholar 

  48. Kalinin, B.D., Anal. Kontrol’, 2016, vol. 20, no. 2, p. 175. https://doi.org/10.15826/analitika.2016.20.2.006

    Article  Google Scholar 

  49. Revenko, A.G., Anal. Kontrol’, 2016, vol. 20, no. 3, p. 242. https://doi.org/10.15826/analitika.2016.20.3.005

    Article  Google Scholar 

  50. Revenko, A.G., in Muradin Kumakhov: Operedivshii vremya. Zhizn’ i tvorchestvo (Muradin Kumakhov: Ahead of Time. Life and Art), Kumakhov, M.G. and Kumakhov, A.M., Eds., Nal’chik: Elbrus, 2016, p. 216.

  51. Zolotov, Yu.A., Rossiiskii vklad v analiticheskuyu khimiyu (Russian Contribution to Analytical Chemistry), Moscow: Lysenko, 2017.

  52. Brytov, I.A., Nauchn. Priborostr., 2018, vol. 28, no. 4, p. 5. https://doi.org/10.18358/np-28-4-i57

    Article  Google Scholar 

  53. Revenko, A.G. and Duimakaev, Sh.I., Anal. Kontrol’, 2019, vol. 23, no. 2, p. 274.

    Google Scholar 

  54. Brytov, I., Ekon. Strategii, 2019, no. 2, p. 94.

  55. Revenko, A.G., Anal. Kontrol’, 2021, vol. 25, no. 3, p. 241.

    Google Scholar 

  56. Kalinin, B.D., Anal. Kontrol’, 2020, vol. 24, no. 2, p. 152.

    Google Scholar 

  57. Revenko, A.G., Finkelstein, A.L., and Duymakaev, Sh.I., X-Ray Spectrom., 2023, vol. 52, p. 1.

    Article  Google Scholar 

  58. Korzhova, E.N., Stavitskaya, M.V., Belozerova, O.Yu., Khaptagaeva, E.A., and Smagunova, A.N., J. Anal. Chem., 2011, vol. 66, p. 171. https://doi.org/10.1134/S1061934811020092

    Article  CAS  Google Scholar 

  59. Duimakaev, Sh.I., Pot’kalo, M.V., and Shpolyanskii, A.Ya., Evraz. Soyuz Uchenykh.: Fiz.-Mat. Nauki, 2015, vol. 4, no. 13, p. 73.

    Google Scholar 

  60. Volkov, A.I. and Alov, N.V., Moscow Univ. Chem. Bull., 2011, vol. 66, no. 1, p. 47. https://doi.org/10.3103/S0027131411010123

    Article  Google Scholar 

  61. Portnoi, A.Yu., Pavlinskii, G.V., Gorbunov, M.S., and Sidorova, Yu.I., Nauchn. Priborostr., 2011, vol. 21, no. 4, p. 145.

    CAS  Google Scholar 

  62. Pavlinsky, G.V., Gorbunov, M.S., and Vladimirova, L.I., X-Ray Spectrom., 2012, vol. 41, no. 4, p. 247. https://doi.org/10.1002/xrs.2388

    Article  CAS  Google Scholar 

  63. Pavlinskii, G.V., Gorbunov, M.S., and Vladimirova, L.I., J. Anal. Chem., 2012, vol. 67, no. 3, p. 226. https://doi.org/10.1134/S1061934812030094

  64. Chuparina, E.V., Smagunova, A.N., and Eliseeva, L.A., J. Anal. Chem., 2015. V. 70, no. 8, p. 949. https://doi.org/10.7868/S0044450215080058

  65. Zhang, Q., Ge, L., Gu, Y., Lin, Y., Zeng, G., and Yang, J., X-Ray Spectrom., 2012, vol. 41, no. 2, p. 75. https://doi.org/10.1002/xrs.2360

    Article  CAS  Google Scholar 

  66. Zhao, F. and Wang, A., X-Ray Spectrom., 2015, vol. 44, no. 2, p. 41. https://doi.org/10.1002/xrs.2576

    Article  CAS  Google Scholar 

  67. Kuz’mina, T.G., Roshchina, I.A., and Khokhlova, I.V., J. Anal. Chem., 2012. V. 67, no. 5, p. 455. https://doi.org/10.1134/S1061934812050097

  68. Duimakaev, Sh.I. and Sorochinskaya, M.A., Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg. Estestv. Nauki, 2014, no. 1, p. 53.

  69. Borkhodoev, V.Ya., Anal. Kontrol’, 2015, vol. 19, no. 1, p. 40. https://doi.org/10.15826/analitika.2015.19.1.009

    Article  Google Scholar 

  70. Duimakaev, Sh.I. and Pot’kalo, M.V., Anal. Kontrol’, 2016, vol. 20, no. 1, p. 23. https://doi.org/10.15826/analitika.2015.20.1.002

    Article  Google Scholar 

  71. Guerra, M., Manso, M., Pessanha, S., Longelin, S., and Carvalho, M.L., X-Ray Spectrom., 2013, vol. 42, no. 5, p. 402. https://doi.org/10.1002/xrs.2491

    Article  CAS  Google Scholar 

  72. Pavlinsky, G.V. and Portnoy, A.Yu., X-Ray Spectrom., 2014, vol. 43, no. 2, p. 118. https://doi.org/10.1002/xrs.2525

    Article  CAS  Google Scholar 

  73. Tsvetyanskii, A.L., Eritenko, A.N., and Polev, A.A., Anal. Kontrol’, 2015, vol. 19, no. 2, p. 115. https://doi.org/10.15826/analitika.2015.19.2.003

    Article  Google Scholar 

  74. Pavlinsky, G.V., X-Ray Spectrom., 2021, vol. 50, no. 5, p. 454. https://doi.org/10.1002/xrs.3233

    Article  CAS  Google Scholar 

  75. Pavlinskii, G.V., J. Anal. Chem., 2016, vol. 71, no. 1, p. 22. https://doi.org/10.7868/S0044450215120142

    Article  CAS  Google Scholar 

  76. Borkhodoev, V.Ya., J. Anal. Chem., 2014, vol. 69, no. 11, p. 1041. https://doi.org/10.1134/S1061934814110021

    Article  CAS  Google Scholar 

  77. Borkhodoev, V.Ya., J. Anal. Chem., 2015, vol. 70, no. 11, p. 1307. https://doi.org/10.7868/S0044450215090042

    Article  CAS  Google Scholar 

  78. Beckhoff, B., Jach, T., Jeynes, C., Lépy, M.-C., Sakurai, K., and Santos, J.P., International initiative on X-ray fundamental parameters. Roadmap document on atomic Fundamental Parameters for X-ray methodologies. Version 2.0. 2017. https://www.exsa.hu/news/wp-content/uploads/IIFP_Roadmap_V2.pdf. Accessed May 5, 2022.

  79. Kolbe, M., Hönicke, P., Müller, M., and Beckhoff, B., Phys. Rev. A, 2012, vol. 86, no. 4, p. 042512.

    Article  Google Scholar 

  80. Hönicke, P., Kolbe, M., Müller, M., Mantler, M., Kramer, M., and Beckhoff, B., Phys. Rev. Lett., 2014, vol. 113, no. 16, p. 163001.

    Article  PubMed  Google Scholar 

  81. Hönicke, P., Kolbe, M., Krumrey, M., Unterumsberger, R., and Beckhoff, B., Spectrochim. Acta, Part B, 2016, vol. 124, p. 94. https://doi.org/10.1016/j.sab.2016.08.024

    Article  CAS  Google Scholar 

  82. Ménesguen, Y., Lépy, M.C., Hönicke, P., Müller, M., Unterumsberger, R., Beckhoff, B., Hoszowska, J., Dousse, J.-Cl., Błachucki, W., and Ito, Y., Metrologia, 2017, vol. 55, no. 1, p. 56. https://doi.org/10.1088/1681-7575/aa9b12

    Article  CAS  Google Scholar 

  83. Kolbe, M. and Hönicke, P., X-Ray Spectrom., 2015, vol. 44, no. 4, p. 217. https://doi.org/10.1002/xrs.2603

    Article  CAS  Google Scholar 

  84. Krishnananda, S., Mirji, M., Hosamani, N.M., Badiger, M.K., and Tiwari, G.S., X-Ray Spectrom., 2016, vol. 45, no. 2, p. 72. https://doi.org/10.1002/xrs.2655

    Article  CAS  Google Scholar 

  85. Hönicke, P., Kolbe, M., and Beckhoff, B., X-Ray Spectrom., 2016, vol. 45, no. 4, p. 207. https://doi.org/10.1002/xrs.2691

    Article  CAS  Google Scholar 

  86. Ganly, B., Van Haarlem, Y., and Tickner, J., X-Ray Spectrom., 2016, vol. 45, no. 4, p. 233. https://doi.org/10.1002/xrs.2695

    Article  CAS  Google Scholar 

  87. Mukoyama, T., X-Ray Spectrom., 2016, vol. 45, no. 5, p. 263. https://doi.org/10.1002/xrs.2699

    Article  CAS  Google Scholar 

  88. Menesguen, Y., Gerlach, M., Pollakowski, B., Unterumsberger, R., Haschke, M., Beckhoff, B., and Lépy, M.-C., Metrologia, 2016, vol. 53, p. 7. https://doi.org/10.1088/0026-1394/53/1/7

    Article  CAS  Google Scholar 

  89. Duggal, H., Sharma, V., Kainth, H.S., Kumar, S., Shahi, J.S., and Mehta, D., Nucl. Instrum. Methods Phys. Res., Sect. B, 2018, vol. 429, p. 19. https://doi.org/10.1016/j.nimb.2018.05.013

    Article  CAS  Google Scholar 

  90. Unterumsberger, R., Hönicke, P., Colaux, J.L., Jeynes, C., Wansleben, M., Müller, M., and Beckhoff, B., J. Anal. At. Spectrom., 2018, vol. 33, no. 6, p. 1003. https://doi.org/10.1039/C8JA00046H

    Article  CAS  Google Scholar 

  91. Kaur, R., Kumar, A., Czyzycki, M., Migliori, A., Karydas, A.G., and Puri, S., X-Ray Spectrom., 2018, vol. 47, no. 1, p. 11. https://doi.org/10.1002/xrs.2800

    Article  CAS  Google Scholar 

  92. Menesguen, Y. and Lépy, M.-C., X-Ray Spectrom., 2020, vol. 49, no. 5, p. 596. https://doi.org/10.1002/xrs.3157

    Article  CAS  Google Scholar 

  93. Fernández-Ruiz, R., Spectrochim. Acta, Part B, 2021, vol. 180, p. 106207. https://doi.org/10.1016/j.sab.2021.106207

    Article  CAS  Google Scholar 

  94. Hiremath, G.B., Bennal, A.S., Hosamani, M.M., Badiger, N.M., Trivedi, A., and Tiwari, M.K., X-Ray Spectrom., 2021, vol. 50, no. 1, p. 37. https://doi.org/10.1002/xrs.3191

    Article  CAS  Google Scholar 

  95. Unterumsberger, R., Hönicke, P., Wauschkuhn, N., Beckhoff, B., Kramer, M., Sampaio, J., Parente, F., Indelicato, P., Marques, J.P., and Santos, J.P., Radiat. Phys. Chem., 2022, vol. 202, p. 110501. https://doi.org/10.1016/j.radphyschem.2022.110501

    Article  CAS  Google Scholar 

  96. Kaur, S., Ayri, V., Kumar, A., Czyzycki, M., Karydas, A.G., and Puri, S., X-Ray Spectrom., 2022, vol. 51, no. 1, p. 15. https://doi.org/10.1002/xrs.3247

    Article  CAS  Google Scholar 

  97. Kayser, Y., Hönicke, P., Wansleben, M., Wahlisch, A., and Beckhoff, B., X-Ray Spectrom., 2022, vol. 51, no. 1, p. 1. https://doi.org/10.1002/xrs.3313

    Article  CAS  Google Scholar 

  98. Cornaby, S. and Kozaczek, K., in Encyclopedia of Analytical Chemistry, New York: Wiley, 2016. https://doi.org/10.1002/9780470027318.a9460

    Book  Google Scholar 

  99. Revenko, A.G., Spectrochim. Acta, Part B, 2007, vol. 62, nos 6-7, p. 567. https://doi.org/10.1016/j.sab.2007.04.019

    Article  CAS  Google Scholar 

  100. Bolotokov, A., Zaitsev, D., Shcherbakov, A., and Lyuttsau, A., Analitika, 2012, vol. 4, no. 5, p. 14.

    Google Scholar 

  101. Dar’in, F.A., Cand. Sci. (Chem.) Dissertation, Novosibirsk: Budker Inst. Nucl. Phys., Sib. Branch, Russ. Acad. Sci., 2022.

  102. Revenko, A.G., Suvorova, D.S., and Khudonogova, E.V., Anal. Kontrol’, 2018, vol. 22, no. 2, p. 117. https://doi.org/10.15826/analitika.2018.22.2.009

    Article  Google Scholar 

  103. Zhalsaraev, B.Z., X-Ray Spectrom., 2019, vol. 48, no. 6, p. 628. https://doi.org/10.1002/xrs.3046

    Article  CAS  Google Scholar 

  104. Zhalsaraev, B.Z., X-Ray Spectrom., 2020, vol. 49, no. 4, p. 480. https://doi.org/10.1002/xrs.3142

    Article  CAS  Google Scholar 

  105. Zhalsaraev, B.Zh., X-Ray Spectrom., 2021, vol. 50, no. 1, p. 28. https://doi.org/10.1002/xrs.3187

    Article  CAS  Google Scholar 

  106. Tiwari, M.K.Ch., in X-Ray Fluorescence in Biological Sciences: Principles, Instrumentation, and Applications, Singh, V.K., Kawai, J., and Tripathi, D.K., Eds., New York: Wiley, 2022, p. 219.

    Google Scholar 

  107. Portnoy, A.Yu., Pavlinsky, G.V., Gorbunov, M.S., and Sidorova, Yu.I., X-Ray Spectrom., 2012, vol. 41, no. 5, p. 298. https://doi.org/10.1002/xrs.2396

    Article  CAS  Google Scholar 

  108. Samedov, V.V., X-Ray Spectrom., 2015, vol. 44, no. 3, p. 183. https://doi.org/10.1002/xrs.2598

    Article  CAS  Google Scholar 

  109. Hampai, D., Liedl, A., Polese, C., Cappuccio, G., and Dabagov, S.B., X-Ray Spectrom., 2015, vol. 44, no. 4, p. 243. https://doi.org/10.1002/xrs.2614

    Article  CAS  Google Scholar 

  110. Kitov, B.I., Mukhachyov, Y.S., and Ryabov, Y.V., X‑Ray Spectrom., 2016, vol. 45, no. 1, p. 48. https://doi.org/10.1002/xrs.2654

    Article  CAS  Google Scholar 

  111. Revenko, A.G., Anal. Kontrol’, 2010, vol. 14, no. 2, p. 42.

    Google Scholar 

  112. Pashkova, G.V., Revenko, A.G., and Finkelshtein, A.L., X-Ray Spectrom., 2013, vol. 42, no. 6, p. 524. https://doi.org/10.1002/xrs.2513

    Article  CAS  Google Scholar 

  113. Pashkova, G.V., Chubarov, V.M., Akhmetzhanov, T.F., Zhilicheva, A.N., Mukhamedova, M.M., Finkelshtein, A.L., and Belozerova, O.Y., Spectrochim. Acta, Part B, 2020, vol. 168, p. 105856. https://doi.org/10.1016/j.sab.2020.105856

    Article  CAS  Google Scholar 

  114. Pashkova, G.V. and Maltsev, A.S., in X-Ray Fluorescence in Biological Sciences: Principles, Instrumentation, and Applications, Singh, V.K., Kawai, J., and Tripathi, D.K., Eds., New York: Wiley, 2022, p. 327.

    Google Scholar 

  115. Mal’tsev, A.S., fon Bolen A., Yusupov, R.A., and Bakhteev, S.A., Anal. Kontrol’, 2019, vol. 23, no. 4, p. 483. https://doi.org/10.15826/analitika.2019.23.4.009

    Article  Google Scholar 

  116. Maltsev, A.S., Yusupov, R.A., and Bakhteev, S.A., X-Ray Spectrom., 2022, vol. 52, no. 4, p. 160. https://doi.org/10.1002/xrs.3283

    Article  CAS  Google Scholar 

  117. Marguí, E., Jablan, J., Queralt, I., Bilo, F., and Borgese, L., X-Ray Spectrom., 2022, vol. 51, no. 3, p. 230. https://doi.org/10.1002/xrs.3230

    Article  CAS  Google Scholar 

  118. Takahara, H., Ohbuchi, A., and Murai, K., Spectrochim. Acta, Part B, 2018, vol. 149, p. 276. https://doi.org/10.1016/j.sab.2018.07.008

    Article  CAS  Google Scholar 

  119. Haberl, J., Fromm, S., and Schuster, M., Spectrochim. Acta, Part B, 2019, vol. 154, p. 82. https://doi.org/10.1016/j.sab.2019.02.004

    Article  CAS  Google Scholar 

  120. Matsuyama, T., Tanaka, Y., Nakae, M., Furusato, T., and Tsuji, K., Analyst, 2022, vol. 147, no. 22, p. 5130. https://doi.org/10.1039/D2AN01290A

    Article  CAS  PubMed  Google Scholar 

  121. Sugioka, T., Umeda, H., and Kunimura, S., Anal. Sci., 2020, vol. 36, no. 4, p. 465. https://doi.org/10.2116/analsci.19P372

    Article  CAS  PubMed  Google Scholar 

  122. Kunimura, S. and Shinkai, T., Anal. Sci., 2017, vol. 33, no. 5, p. 635. https://doi.org/10.2116/analsci.33.635

    Article  CAS  PubMed  Google Scholar 

  123. Tsuji, K., Yomogita, N., and Konyuba, Y., Spectrochim. Acta, Part B, 2018, vol. 144, p. 68. https://doi.org/10.1016/j.sab.2018.03.005

    Article  CAS  Google Scholar 

  124. Smagunova, A.N. and Pashkova, G.V., X-Ray Spectrom., 2013, vol. 42, no. 6, p. 546. https://doi.org/10.1002/xrs.2519

    Article  CAS  Google Scholar 

  125. Regadío, M., Riano, S., Binnemans, K., and van der Hoogerstraete, T., Anal. Chem., 2017, vol. 89, no. 8, p. 4595. https://doi.org/10.1021/acs.analchem.7b00097

    Article  CAS  PubMed  Google Scholar 

  126. Von Bohlen, A. and Fernández-Ruiz, R., Talanta, 2020, vol. 209, p. 120562. https://doi.org/10.1016/j.talanta.2019.120562

    Article  CAS  PubMed  Google Scholar 

  127. Maltsev, A.S., Yusupov, R.A., and Bakhteev, S.A., in X-Ray Fluorescence in Biological Sciences: Principles, Instrumentation, and Applications, Singh, V.K., Kawai, J., and Tripathi, D.K., Eds., New York: Wiley, 2022, p. 249.

    Google Scholar 

  128. Fernández-Ruiz, R., Friedrich, K.E.J., and Redrejo, M.J., Spectrochim. Acta, Part B, 2018, vol. 140, p. 76. https://doi.org/10.1016/j.sab.2017.12.007

    Article  CAS  Google Scholar 

  129. Pashkova, G.V., Zhilicheva, A.N., Chubarov, V.M., Artem, S., Maltsev, A.S., Ukhova, N.N., Pellinen, V.A., Sokolnikova, J.V., Kirsanov, D.O., Panchuk, V.V., and Marfin, A.E., Spectrochim. Acta, Part B, 2022, vol. 198, p. 106549. https://doi.org/10.1016/j.sab.2022.106549

    Article  CAS  Google Scholar 

  130. Sharanov, P.Yu., Alov, N.V., and Zolotov, Yu.A., Dokl. Chem., 2016, vol. 467, no. 1, p. 91. https://doi.org/10.7868/S0869565216090140

    Article  CAS  Google Scholar 

  131. Maltsev, A.S., Ivanov, A.V., Pashkova, G.V., Marfin, A.E., and Bishaev, Y.A., Spectrochim. Acta, Part B, 2021, vol. 184, p. 131. https://doi.org/10.1016/j.sab.2021.106281

    Article  Google Scholar 

  132. Oskolok, K.V., Monogarova, O.V., and Alov, N.V., Moscow Univ. Chem. Bull., 2017, vol. 72, no. 4, p. 174. https://doi.org/10.3103/S002713141704006X

    Article  Google Scholar 

  133. Musielak, M., Serda, M., and Sitko, R., Food Chem., 2022, vol. 390, p. 133136. https://doi.org/10.1016/j.foodchem.2022.133136

    Article  CAS  PubMed  Google Scholar 

  134. Marguí, E., Queralt, I., Guerra, M., and Kallithrakas-Kontos, N., Spectrochim. Acta, Part B, 2018, vol. 149, p. 84. https://doi.org/10.1016/j.sab.2018.07.020

    Article  CAS  Google Scholar 

  135. Revenko, A.G., Anal. Kontrol’, 2020, vol. 24, no. 1, p. 66. https://doi.org/10.15826/analitika.2020.24.1.008

    Article  Google Scholar 

  136. Sanyal, K., Dhara, S., Gumber, N., and Pai, R.V., Talanta, 2023, vol. 254, p. 124129. https://doi.org/10.1016/j.talanta.2022.124129

    Article  CAS  PubMed  Google Scholar 

  137. Kocot, K., Pytlakowska, K., Talik, E., Krafft, C., and Sitko, R., Talanta, 2022, vol. 246, p. 123501. https://doi.org/10.1016/j.talanta.2022.123501

    Article  CAS  PubMed  Google Scholar 

  138. Takahashi, H., Izumoto, Y., Matsuyama, T., and Yoshii, H., X-Ray Spectrom., 2019, vol. 48, no. 5, p. 366. https://doi.org/10.1002/xrs.3032

    Article  CAS  Google Scholar 

  139. Sanyal, K., Chappa, S., Bahadur, J., Pandey, A.K., and Mishra, N.L., J. Anal. At. Spectrom., 2020, vol. 35, no. 11, p. 2770. https://doi.org/10.1039/D0JA00385A

    Article  CAS  Google Scholar 

  140. Majumder, S., Marguí, E., Roman-Ross, G., Chatterjee, D., and Hidalgo, M., Talanta, 2020, vol. 217, p. 121005. https://doi.org/10.1016/j.talanta.2020.121005

    Article  CAS  PubMed  Google Scholar 

  141. Malkov, A.V., Kozhevnikov, A.Y., Kosyakov, D.S., and Kosheleva, A.E., J. Anal. Chem., 2017, vol. 72, no. 6, p. 608. https://doi.org/10.7868/S004445021706010X

    Article  CAS  Google Scholar 

  142. Oskolok, K.V., Monogarova, O.V., and Alov, N.V., J. Anal. Chem., 2018, vol. 73, no. 11, p. 1093. https://doi.org/10.1134/S1061934818110084

    Article  CAS  Google Scholar 

  143. Maksimova, Y.A., Dubenskiy, A.S., Garmash, A.V., Pashkova, G.V., Shigapov, I.V., Seregina, I.F., Pavlova, L.A., Sharanov, P.Y., and Bolshov, M.A., Spectrochim. Acta, Part B, 2022, vol. 196, p. 106521. https://doi.org/10.1016/j.sab.2022.106521

    Article  CAS  Google Scholar 

  144. Pashkova, G.V., Aisueva, T.S., Finkelshtein, A.L., Cherkashina, T.Y., and Shchetnikov, A.A., Microchem. J., 2018, vol. 143, p. 264. https://doi.org/10.1016/j.microc.2018.08.020

    Article  CAS  Google Scholar 

  145. Towett, E.K., Shepherd, K.D., and Cadisch, G., Sci. Total Environ., 2013, vols. 463–464, p. 374. https://doi.org/10.1016/j.scitotenv.2013.05.068

    Article  CAS  PubMed  Google Scholar 

  146. Bilo, F., Borgese, L., Pardini, G., Marguí, E., Zacco, A., Dalipi, R., Federici, S., Bettinelli, M., Volante, M., Bontempi, E., and Depero, L.E., J. Anal. At. Spectrom., 2019, vol. 34, no. 5, p. 930. https://doi.org/10.1039/C9JA00040B

    Article  CAS  Google Scholar 

  147. Marguí, E., Queralt, I., Andrey, D., and Perring, L., Food Chem., 2022, vol. 383, p. 132590. https://doi.org/10.1016/j.foodchem.2022.132590

    Article  CAS  PubMed  Google Scholar 

  148. Dalipi, R., Marguí, E., Borgese, L., and Depero, L.E., Food Chem., 2017, vol. 218, p. 348. https://doi.org/10.1016/j.foodchem.2016.09.022

    Article  CAS  PubMed  Google Scholar 

  149. Kirsanov, D., Panchuk, V., Goydenko, A., Khaydukova, M., Semenov, V., and Legin, A., Spectrochim. Acta, Part B, 2015, vol. 113, p. 4973. https://doi.org/10.1016/j.sab.2015.09.013

    Article  CAS  Google Scholar 

  150. Shulyumova, A., Maltsev, A., and Umarova, N., X-Ray Spectrom., 2018, vol. 47, no. 5, p. 396. https://doi.org/10.1002/xrs.2958

    Article  CAS  Google Scholar 

  151. Akhmetzhanov, T.F., Pashkova, G.V., Chubarov, V.M., Labutin, T.A., and Popov, A.M., J. Anal. At. Spectrom., 2021, vol. 36, no. 1, p. 224. https://doi.org/10.1039/D0JA00264J

    Article  CAS  Google Scholar 

  152. González, G.M., Castillo, R.P., and Neira, J.Y., X-Ray Spectrom., 2019, vol. 48, no. 6, p. 700. https://doi.org/10.1002/xrs.3113

    Article  CAS  Google Scholar 

  153. Mennickent, D., Castillo, R.D.P., Araya, J., and Neira, J.Y., X-Ray Spectrom., 2022, vol. 51, no. 2, p. 142. https://doi.org/10.1002/xrs.3273

    Article  CAS  Google Scholar 

  154. Shao, J., Jia, W., Zhang, X., Liu, Y., Tang, X., Xiong, G., and Shan, Q., J. Anal. At. Spectrom., 2020, vol. 35, no. 4, p. 746. https://doi.org/10.1039/C9JA00419J

    Article  CAS  Google Scholar 

  155. Floor, G.H., Queralt, I., Hidalgo, M., and Marguí, E., Spectrochim. Acta, Part B, 2015, vol. 111, p. 30. https://doi.org/10.1016/j.sab.2015.06.015

    Article  CAS  Google Scholar 

  156. Maltsev, A.S., Ivanov, A.V., Chubarov, V.M., Pashkova, G.V., Panteeva, S.V., and Reznitskii, L.Z., Talanta, 2020, vol. 214, p. 120870. https://doi.org/10.1016/j.talanta.2020.120870

    Article  CAS  PubMed  Google Scholar 

  157. Devi, P.S.R., Chavan, T.A., Ghosh, M., and Swain, K.K., Spectrochim. Acta, Part B, 2021, vol. 178, p. 106127. https://doi.org/10.1016/j.sab.2021.106127

    Article  CAS  Google Scholar 

  158. Kowalkiewicz, Z. and Urbaniak, W., Spectrochim. Acta, Part B, 2020, vol. 164, p. 105736. https://doi.org/10.1016/j.sab.2019.105736

    Article  CAS  Google Scholar 

  159. Mishra, N.L. and Dhara, S., in X-Ray Fluorescence in Biological Sciences: Principles, Instrumentation, and Applications, Singh, V.K., Kawai, J., and Tripathi, D.K., Eds., New York: Wiley, 2022, p. 203. https://doi.org/10.1002/9781119645719.ch13

    Book  Google Scholar 

  160. Dalipi, R., Borgese, L., Zacco, A., Tsuji, K., San-giorgi, E., Piro, R., Bontemp, E., and Depero, L.E., Int. J. Environ. Anal. Chem., 2015, vol. 95, no. 13, p. 1208. https://doi.org/10.1080/03067319.2015.1036861

    Article  CAS  Google Scholar 

  161. Obhodas, J., Valkovic, V., Vinkovic, A., Sudac, D., Čanad̵ija, I., Pensa, T., Fiket, Z., Turyanskaya, A., Bretschneider, T., Wilhelmer, C., Gunchin, G., Kregsamer, P., Wobrauschek, P., and Streli, C., ACS Omega, 2021, vol. 6, no. 35, p. 22643. https://doi.org/10.1021/acsomega.1c02731

    Article  CAS  PubMed Central  Google Scholar 

  162. Čepo, D.V., Karoglan, M., Borgese, L., Depero, L.E., Marguí, E., and Jablan, J., Food Chem.: X, 2022, vol. 13, p. 100209. https://doi.org/10.1016/j.fochx.2022.100209

    Article  CAS  Google Scholar 

  163. Shand, C.A., Wendler, R.R., Dawson, L., Yates, K., and Stephenson, H., Anal. Chim. Acta, 2017, vol. 976, p. 14. https://doi.org/10.1016/j.aca.2017.04.041

    Article  CAS  PubMed  Google Scholar 

  164. Gama, E.M., Nascentes, C.C., Matos, R.P., Rodrigues, G.D.C., and Rodrigues, G.D., Talanta, 2017, vol. 174, p. 274. https://doi.org/10.1016/j.talanta.2017.05.059

    Article  CAS  PubMed  Google Scholar 

  165. Georgieva, R.H., Detcheva, A.K., Karadjov, M.G., Mitsiev, S.E., Jordanov, J.H., and Ivanova, E.H., Bulg. Chem. Commun., 2014, vol. 46, no. 4, p. 840.

    Google Scholar 

  166. Siviero, G., Cinosi, A., Monticelli, D., and Seralessandri, L., Spectrochim. Acta, Part B, 2018, vol. 144, p. 15. https://doi.org/10.1016/j.sab.2018.03.006

    Article  CAS  Google Scholar 

  167. Dalipi, R., Borgese, L., Tsuji, K., Bontempi, E., and Depero, L.E., J. Food Compos. Anal., 2018, vol. 67, p. 128. https://doi.org/10.1016/j.jfca.2018.01.010

    Article  CAS  Google Scholar 

  168. Marguí, E. and Voutchkov, M., Food Anal. Methods, 2018, vol. 11, no. 1, p. 282. https://doi.org/10.1007/s12161-017-0998-8

    Article  Google Scholar 

  169. Mal’tsev, A.S., Sharykina, D.S., Chuparina, E.V., Pashkova, G.V., and Revenko, A.G., Anal. Kontrol’, 2019, vol. 23, no. 2, p. 247 https://doi.org/10.15826/analitika.2019.23.2.009

    Article  Google Scholar 

  170. Winkler, A., Rauwolf, M., Sterba, J.H., Wobrauschek, P., Streli, C., and Turyanskaya, A., J. Sci. Food Agric., 2020, vol. 100, no. 11, p. 4226. https://doi.org/10.1002/jsfa.10463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Maltsev, A.S., Chuparina, E.V., Pashkova, G.V., Sokol’nikova, J.V., Zarubina, O.V., and Shuliumova, A.N., Food Chem., 2021, vol. 343, p. 128502. https://doi.org/10.1016/j.foodchem.2020.128502

    Article  CAS  PubMed  Google Scholar 

  172. Zhang, X., Jia, W., Tang, X., Shan, Q., Chen, Q., Cheng, C., Shao, J., Ling, Y., and Hei, D., Anal. Lett., 2023, vol. 56, no. 4, p. 556. https://doi.org/10.1080/00032719.2022.2093891

    Article  CAS  Google Scholar 

  173. Marguí, E., Dalipi, R., Sangiorgi, E., Bival, StefanM., Sladonja, K., Rogga, V., and Jablan, J., X-Ray Spectrom., 2022, vol. 51, no. 3, p. 204. https://doi.org/10.1002/xrs.3241

    Article  CAS  Google Scholar 

  174. Dalipi, R., Berneri, R., Curatolo, M., Borgese, L., Depero, L.E., and Sangiorgi, E., Spectrochim. Acta, Part B, 2018, vol. 148, p. 16. https://doi.org/10.1016/j.sab.2018.06.002

    Article  CAS  Google Scholar 

  175. Machado, I., Mondutey, S., Pastorino, N., Arce, V., and Piston, M., J. Anal. At. Spectrom., 2018, vol. 33, no. 7, p. 1264. https://doi.org/10.1039/C8JA00144H

    Article  CAS  Google Scholar 

  176. Marguí, E., De Fátima, MarquesA., De Lurdes, PrisalM., Hidalgo, M., Queralt, I., and Carvalho, M.L., Appl. Spectrosc., 2014, vol. 68, no. 11, p. 1241. https://doi.org/10.1366/13-073

    Article  PubMed  Google Scholar 

  177. Allegretta, I., Squeo, G., Gattullo, C.E., Porfido, C., Cicchetti, A., Caponio, F., Cesco, S., Nicoletto, C., and Terzano, R., Food Chem., 2023, vol. 401, p. 134124. https://doi.org/10.1016/j.foodchem.2022.134124

    Article  CAS  PubMed  Google Scholar 

  178. Danilov, D.V., Sharanov, P.Yu., and Alov, N.V., J. Anal. Chem., 2020, vol. 75, no. 6, p. 764. https://doi.org/10.1134/S1061934820060040

    Article  CAS  Google Scholar 

  179. Danilov, D.V., Sharanov, P.Yu., and Alov, N.V., Pharm. Chem. J., 2023, vol. 57, no. 2, p. 306. https://doi.org/10.1007/s11094-023-02881-6

    Article  CAS  Google Scholar 

  180. Shaltout, A.A., Abd-Elkader, O.H., Lassen, P., and Fittschen, U.A.E., X-Ray Spectrom., 2023. https://doi.org/10.1002/xrs.3331

  181. Carvalho, P.M., Marguí, E., Kubala-Kukus, A., Banas, D., Machado, J., Casal, D., Pais, D., Santos, J.P., and Pessanha, S., Spectrochim. Acta, Part B, 2022, vol. 198, p. 106548. https://doi.org/10.1016/j.sab.2022.106548

    Article  CAS  Google Scholar 

  182. Chubarov, V., Cherkashina, T., Maltsev, A., Chuparina, E., Amosova, A., and Prosekin, S., Agron, 2022, vol. 12, no. 2, p. 454. https://doi.org/10.3390/agronomy12020454

    Article  CAS  Google Scholar 

  183. Kayser, Y., Osán, J., Hönicke, P., and Beckhoff, B., Anal. Chim. Acta, 2022, vol. 1192, p. 339367. https://doi.org/10.1016/j.aca.2021.339367

    Article  CAS  PubMed  Google Scholar 

  184. Lara-Almazán, N., Zarazúa-Ortega, G., Ávila-Pérez, P., Carreño-De León, C., Barrera-Díaz, C.E., X-Ray Spectrom., 2021, vol. 50, no. 5, p. 414. https://doi.org/10.1002/xrs.3220

    Article  CAS  Google Scholar 

  185. Bilo, F., Borgese, L., Dalipi, R., Zacco, A., Federici, S., Masperi, M., Leonesio, P., Bontempi, E., and Depero, L., Chemosphere, 2017, vol. 178, p. 504. https://doi.org/10.1016/j.chemosphere.2017.03.090

    Article  CAS  PubMed  Google Scholar 

  186. Mal’tsev, A.S. and Pashkova, G.V., Geodin. Tektonofiz., 2022, vol. 13, no. 2, p. 0601. https://doi.org/10.5800/GT-2022-13-2s-0601

  187. Sharanov, P.Yu. and Alov, N.V., J. Anal. Chem., 2018, vol. 73, no. 11, p. 1085. https://doi.org/10.1134/S0044450218110129

    Article  CAS  Google Scholar 

  188. Filatova, D.G., Alov, N.V., Vorobyeva, N.A., Rumyantseva, M.N., Sharanov, P.Y., Seregina, I.F., and Gaskov, A.M., Spectrochim. Acta, Part B, 2016, vol. 118, p. 62. https://doi.org/10.1016/j.sab.2016.02.008

    Article  CAS  Google Scholar 

  189. Filatova, D.G., Chizhov, A.S., and Rumyantseva, M.N., Zavod. Lab., Diagn. Mater., 2022, vol. 88, no. 4, p. 5. https://doi.org/10.26896/1028-6861-2022-88-4-5-9

    Article  Google Scholar 

  190. Rodriguez, C.M.C., Andreano, V., Custo, G., and Vázquez, C., Microchem. J., 2013, vol. 110, p. 402. https://doi.org/10.1016/j.microc.2013.05.009

    Article  CAS  Google Scholar 

  191. Marguí, E., Dalipi, R., Borgese, L., Depero, L.E., and Queralt, I., Anal. Chim. Acta, 2019, vol. 1075, p. 27. https://doi.org/10.1016/j.aca.2019.05.005

    Article  CAS  PubMed  Google Scholar 

  192. Shaltout, A.A., Abdel-Hameed, E.-S.S., Bilo, F., Borgese, L., and Depero, L.E., X-Ray Spectrom., 2020, vol. 49, no. 2, p. 322.

    Article  CAS  Google Scholar 

  193. Fernández-Ruiz, R., Redrejo, M.J., Pérez-Apariciom R., and Saiz-Rodríguez, L., Spectrochim. Acta, Part B, 2020, vol. 166, p. 105803. https://doi.org/10.1016/j.sab.2020.105803

    Article  CAS  Google Scholar 

  194. Sarapura, P., Gonzalez, M.F., Gonzalez, F., Morzan, E., Cerchietti, L., and Custo, G., Appl. Radiat., 2019, vol. 153, p. 108841. https://doi.org/10.1016/j.apradiso.2019.108841

    Article  CAS  Google Scholar 

  195. Gong, S.A., Homburger, N., and Huang, L., J. Forensic Sci., 2022, vol. 67, no. 3, p. 1198. https://doi.org/10.1111/1556-4029.14988

    Article  CAS  PubMed  Google Scholar 

  196. Dhara, S., Spectrochim. Acta, Part B, 2023, vol. 201, p. 106625. https://doi.org/10.1016/j.sab.2023.106625

    Article  CAS  Google Scholar 

  197. Gazulla, M.F., Vicente, S., Orduna, M., and Ventura, M.J., X-Ray Spectrom., 2012, vol. 41, no. 3, pp. 176–185. https://doi.org/10.1002/xrs.2381

    Article  CAS  Google Scholar 

  198. Panteeva, S.V., Cherkashina, T.Yu., Revenko, A.G., and Finkel’shtein, A.L., Anal. Kontrol’, 2011, vol. 15, no. 3, p. 344.

    Google Scholar 

  199. Amosova, A.A., Panteeva, S.V., Tatarinov, V.V., Chubarov, V.M., and Finkel’shtein, A.L., Anal. Kontrol’, 2015, vol. 19, no. 2, p. 130. https://doi.org/10.15826/analitika.2015.19.2.009

    Article  Google Scholar 

  200. Ichikawa, S., Onuma, H., and Nakamura, T., X-Ray Spectrom., 2016, vol. 45, no. 1, p. 34. https://doi.org/10.1002/xrs.2652

    Article  CAS  Google Scholar 

  201. Kuz’mina, T.G., Troneva M.A, and Romashova, T.V., J. Anal. Chem., 2020, vol. 75, no. 7, p. 896. https://doi.org/10.31857/S0044450220070130

    Article  Google Scholar 

  202. Li, X., Yu, Z., Xu, J., Pan, Y., Bo, W., Liu, B., Zhang, P., Bai, J., and Zhang, Q., X-Ray Spectrom., 2023, vol. 52, no. 1, p. 2. https://doi.org/10.1002/xrs.3147

    Article  CAS  Google Scholar 

  203. Suvorova, D.S., Khudonogova, E.V., and Revenko, A.G., Anal. Kontrol’, 2014, vol. 18, no. 1, p. 23. https://doi.org/10.15826/analitika.2014.18.1.002

    Article  Google Scholar 

  204. Shtel’makh, S.I., Khudonogova, E.V., and Revenko, A.G., Proc. IV Conf. on X-Ray Analysis, Ulaanbaatar, 2015, p. 54.

  205. Khudonogova, E.V., Suvorova, D.S., and Revenko, A.G., Anal. Kontrol’, 2015, vol. 19, no. 4, p. 347. https://doi.org/10.15826/analitika.2015.19.4.00

    Article  Google Scholar 

  206. Suvorova, D.S., Khudonogova, E.V., and Revenko, A.G., Anal. Kontrol’, 2016, vol. 20, no. 4, p. 344. https://doi.org/10.15826/analitika.2016.20.4.009

    Article  Google Scholar 

  207. Suvorova, D., Khudonogova, E., and Revenko, A., X-Ray Spectrom., 2017, vol. 46, no. 3, p. 200. https://doi.org/10.1002/xrs.2747

    Article  CAS  Google Scholar 

  208. Finkelshtein, A.L. and Chubarov, V.M., X-Ray Spectrom., 2010, vol. 39, p. 17. https://doi.org/10.1002/xrs.1224

    Article  CAS  Google Scholar 

  209. Chubarov, V.M. and Finkelshtein, A.L., J. Anal. Chem., 2010, vol. 65, no. 6, p. 620. https://doi.org/10.1134/S1061934810060122

    Article  CAS  Google Scholar 

  210. Chubarov, V.M., Finkel’shtein, A.L., and Mukhetdinova, A.V., Anal. Kontrol’, 2011, vol. 15, no. 3, p. 339.

    Google Scholar 

  211. Chubarov, V., Suvorova, D., Mukhetdinova, A., and Finkelshtein, A., X-Ray Spectrom., 2015, vol. 44, no. 6, p. 436. https://doi.org/10.1002/xrs.2619

    Article  CAS  Google Scholar 

  212. Simakov, V.A., Kordyukov, S.V., and Moshkova, M.V., Razvedka Okhrana Nedr, 2013, no. 6, p. 54.

  213. Cherkashina, T.Yu., Bolortuya, D., Revenko, A.G., and Zuzaan, P., Anal. Kontrol’, 2014, vol. 18, no. 4, p. 404.

    Google Scholar 

  214. Uhlig, S., Möckel, R., and Pleßow, A., X-Ray Spectrom., 2016, vol. 45, no. 3, p. 133. https://doi.org/10.1002/xrs.2679

    Article  CAS  Google Scholar 

  215. Chubarov, V.M., Amosova, A.A., and Finkel’shtein, A.L., Inorg. Mater., 2020, vol. 56, p. 1423. https://doi.org/10.1134/S0020168520140046

    Article  CAS  Google Scholar 

  216. Kitov, B.I., Anal. Kontrol’, 2019, vol. 23, no. 1, p. 78. https://doi.org/10.15826/analitika.2019.23.1.013

    Article  Google Scholar 

  217. Chubarov, V.M., Borkhonova, E.I., and Amosova, A.A., Anal. Kontrol’, 2020, vol. 24, no. 2, p. 107. https://doi.org/10.15826/analitika.2020.24.2.005

    Article  Google Scholar 

  218. Prilutskii, O.F., Gerasimov, M.V., and Evlanov, E.N., in Vnelaboratornyi khimicheskii analiz (Out-of-Laboratory Chemical Analysis), vol. 13 of Problemy analiticheskoi khimii (Problems of Analytical Chemistry), Zolotov, Yu.A., Ed., Moscow; Nauka, 2020, p. 422.

  219. Smit, Z., Jezersek, D., Pelicon, P., Vavpetic, P., Jersek, M., and Mirtic, B., X-Ray Spectrom., 2011, vol. 40, no. 3, p. 205. https://doi.org/10.1002/xrs.1307

    Article  CAS  Google Scholar 

  220. Zurfluh, F.J., Hofmann, B.A., Gnos, E., and Eggenberger, U., X-Ray Spectrom., 2011, vol. 40, no. 6, p. 449. https://doi.org/10.1002/xrs.1369

    Article  CAS  Google Scholar 

  221. Stracke, A., Palme, H., Gellissen, M., Münker, C., Kleine, T., Birbaum, K., Günther, D., Bourdon, B., and Zipfel, J., Geochim. Cosmochim. Acta, 2012, vol. 85, p. 114. https://doi.org/10.1016/j.gca.2012.02.006

    Article  CAS  Google Scholar 

  222. Buchner, E., Schmieder, M., Kurat, G., Brandstatter, F., Kramar, U., Ntaflos, T., and Krochert, J., Meteorit. Planet. Sci., 2012, vol. 47, no. 9, p. 1491. https://doi.org/10.1111/j.1945-5100.2012.01409.x

    Article  CAS  Google Scholar 

  223. Antipin, V.S., Kuz’min, M.I., Pecherskii, D.M., Tsel’movich, V.A., and Yazev, S.A., Dokl. Earth Sci., 2014, vol. 458, no. 1, p. 1082. https://doi.org/10.7868/S0869565214250136

    Article  CAS  Google Scholar 

  224. Gemelli, M., D’Orazio, M., and Folco, L., Geostand. Geoanal. Res., 2014, vol. 39, no. 1, p. 55. https://doi.org/10.1111/j.1751-908X.2014.00291.x

    Article  CAS  Google Scholar 

  225. Neuland, M.B., Meyer, S., Mezger, K., Riedo, A., Tulej, M., and Wurz, P., Planet. Space Sci., 2014, vol. 101, p. 196. https://doi.org/10.1016/j.pss.2014.03.009

    Article  CAS  Google Scholar 

  226. Cesnek, M., Štefánik, M., Kmječ, T., and Miglierini, M., AIP Conf. Proc., 2016, vol. 1781, p. 020015. https://doi.org/10.1063/1.4966011

    Article  Google Scholar 

  227. Antipin, V.S., Kuz’min, M.I., Mekhonoshin, A.S., and Yazev, S.A., Litosfera, 2019, vol. 19, p. 293. https://doi.org/10.24930/1681-9004-2019-19-2-293-303

    Article  Google Scholar 

  228. Darin, F.A., Rakshun, Ya.V., Sorokoletov, D.S., Darin, A.V., Rashchenko, S.V., Sharygin, V.V., Senin, R.A., and Gogin, A.A., Bull. Russ. Acad. Sci.: Phys., 2019, vol. 83, no. 11, p. 1433. https://doi.org/10.1134/S0367676519110073https://doi.org/10.3103/S1062873819110078

  229. Fendrich, K.V. and Ebel, D.S., Meteorit. Planet. Sci., 2021, vol. 56, no. 1, p. 77. https://doi.org/10.1111/maps.13623

    Article  CAS  Google Scholar 

  230. Goyal, S.K., Shanmugam, M., Vadawale, S., Banerjee, D., Acharya, Y.B., and Murty, S.V.S., Proc. 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference, Seoul, 2013, p. 1. https://doi.org/10.1109/NSSMIC.2013.6829708

  231. Narendranath, S., Athiray, P.S., Sreekumar, P., Radhakrishna, V., Tyagi, A., and Kellett, B.J., Adv. Space Res., vol. 54, no. 10, p. 1993. https://doi.org/10.1016/j.asr.2013.04.008

  232. Shanmugam, M., Murty, S.V.S., Acharya, Y.B., Goyal, S.K., Patel, A.R., Shah, B., Hait, A.K., Patinge, A., and Subrahmanyam, D., Adv. Space Res., 2014, vol. 54, no. 10, p. 1974. https://doi.org/10.1016/j.asr.2013.03.011

    Article  CAS  Google Scholar 

  233. Athiray, P.S., Narendranath, S., Sreekumar, P., and Grande, M., Planet. Space Sci., 2014, vol. 104, p. 279. https://doi.org/10.1016/j.pss.2014.10.010

    Article  CAS  Google Scholar 

  234. Vadawale, S.V., Shanmugam, M., Acharya, Y.B., Patel, A.R., Goyal, S.K., Shah, B., Hait, A.K., Patinge, A., and Subrahmanyam, D., Adv. Space Res., 2014, vol. 54, no. 10, p. 2021. https://doi.org/10.1016/j.asr.2013.06.002

    Article  CAS  Google Scholar 

  235. Kolesnikov, E.K., Cosmic Res., 2016, vol. 54, no. 6, p. 491. https://doi.org/10.1134/S0010952516060058

    Article  CAS  Google Scholar 

  236. Reiss, P., Kerscher, F., and Grill, L., Planet. Space Sci., 2020, vol. 181, p. 104795. https://doi.org/10.1016/j.pss.2019.104795

    Article  CAS  Google Scholar 

  237. Kolesnikov, E.K. and Zelensky, A.G., Planet. Space Sci., 2020, vol. 193, p. 105065. https://doi.org/10.1016/j.pss.2020.105065

    Article  CAS  Google Scholar 

  238. Heinicke, C., Adeli, S., Baque, M., Correale, G., Fateri, M., Jaret, S., Kopacz, N., Ormoh, J., Poulet, L., and Verseux, C., Adv. Space Res., 2021, vol. 68, no. 6, p. 2565. https://doi.org/10.1016/j.asr.2021.04.047

    Article  CAS  Google Scholar 

  239. Marov, M.Ya. and Huntress, W.T., Sovetskie roboty v Solnechnoi sisteme. Tekhnologii i otkrytiya (Soviet Robots in the Solar Systems: Mission Technologies and Discoveries) Moscow: Fizmatlit, 2013.

  240. Campbell, J.L., Perrett, G.M., Maxwell, J.A., Nield, E., Gellert, R., King, P.L., Lee, M., O’Meara, J.M., and Pradler, I., Nucl. Instrum. Methods Phys. Res., Sect. B, 2013, vol. 302, p. 24. https://doi.org/10.1016/j.nimb.2013.03.006

    Article  CAS  Google Scholar 

  241. Berger, J.A., King, P.L., Gellert, R., Campbell, J.L., Boyd, N.I., Pradler, I., Perrett, G.M., Edgett, K.S., Van Bommel, S.J.V., Schmid, M.E., and Lee, R.E.H., J. Geophys. Res.: Planets, 2014, vol. 119, no. 5, p. 1046. https://doi.org/10.1002/2013je004519

    Article  CAS  Google Scholar 

  242. Campbell, J.L., Perrett, G.M., Gellert, R., Andrushenko, S.M., Boyd, N.I., Maxwell, J.A., King, P.L., and Schofield, C.D.M., Space Sci. Rev., 2012, vol. 170, p. 319. https://doi.org/10.1007/s11214-012-9873-5

    Article  CAS  Google Scholar 

  243. Campbell, J.L., King, P.L., Burkemper, L., Berger, J.A., Gellert, R., Boyd, N.I., Perrett, G.M., Pradle, I., Thompson, L., Edgett, K.S., and Yingst, R.A., Nucl. Instrum. Methods Phys. Res., Sect. B, 2014, vol. 323, p. 49. https://doi.org/10.1016/j.nimb.2014.01.011

    Article  CAS  Google Scholar 

  244. Perrett, G.M., Campbell, J.L., Glasauer, S., and Pardo, R., X-Ray Spectrom., 2014, vol. 43, no. 6, p. 359. https://doi.org/10.1002/xrs.2563

    Article  CAS  Google Scholar 

  245. De Angelis, S., De Sanctis, M.C., Ammannito, E., Carli, C., Di Iorio, T., and Altieri, F., Planet. Space Sci., 2014, vol. 101, p. 89. https://doi.org/10.1016/j.pss.2014.06.010

    Article  Google Scholar 

  246. Van Bommel, S.J., Gellert, R., Berger, J.A., Campbell, J.L., Thompson, L.M., Edgett, K.S., McBride, M.J., Minitti, M.E., Pradler, I., and Boyd, N.I., X-Ray Spectrom., 2016, vol. 45, no. 3, p. 155. https://doi.org/10.1002/xrs.2681

    Article  CAS  Google Scholar 

  247. Perrett, G.M., Campbell, J.L., Gellert, R., King, P.L., Nield, E., O’Meara, J.M., and Pradler, I., Nucl. Instrum. Methods Phys. Res., Sect. B, 2016, vol. 368, p. 129. https://doi.org/10.1016/j.nimb.2015.10.076

    Article  CAS  Google Scholar 

  248. Perrett, G.M., Maxwell, J.A., and Campbell, J.L., X-Ray Spectrom., 2017, vol. 46, p. 171. https://doi.org/10.1002/xrs.2743

    Article  CAS  Google Scholar 

  249. Flannigan, E.L. and Campbell, J.L., Nucl. Instrum. Methods Phys. Res., Sect. B, 2017, vol. 413, p. 19. https://doi.org/10.1016/j.nimb.2017.10.002

    Article  CAS  Google Scholar 

  250. Cloutis, Ed., Stromberg, J., Applin, D., Connell, S., Kubanek, K., Kuik, J., Lechowicz, A., Parkinson, A., Ramirez, M., Turenne, N., Cieszecki, J., Germinario, M., Kum, R., Parson, R., Walker, R., Wiens, E., Wiens, J., and Mertzman, S., Planet. Space Sci., 2021, vol. 208, p. 105336. https://doi.org/10.1016/j.pss.2021.105336

    Article  CAS  Google Scholar 

  251. Kerber, L., Head, J.W., Blewett, D.T., Solomon, S.C., Wilson, L., Murchie, S.L., Robinson, M.S., Denevi, B.W., and Domingue, D.L., Planet. Space Sci., 2011, vol. 59, p. 1895. https://doi.org/10.1016/j.pss.2011.03.020

    Article  CAS  Google Scholar 

  252. Solomon, S.C., McNutt, R.L., Jr., and Prockter, L.M., Planet. Space Sci., 2011, vol. 59, p. 1827. https://doi.org/10.1016/j.pss.2011.08.004

    Article  Google Scholar 

  253. Nittler, L.R., Starr, R.D., Weider, S.Z., McCoy, T.J., Boynton, W.V., Ebel, D.S., Ernst, C.M., Evans, L.G., Goldsten, J.O., Hamara, D.K., Lawrence, D.J., McNutt, R.L., Jr., Schlemm, IIC.E., Solomon, S.C., and Sprague, A.L., Science, 2011, vol. 333, p. 1847. https://doi.org/10.1126/science.1211567

    Article  CAS  PubMed  Google Scholar 

  254. Starr, R.D., Schriver, D., Nittler, L.R., Weider, S.Z., Byrne, P.K., Ho, G.C., Rhodes, E.A., Schlemm, IIC.E., Solomon, S.C., and Trávníček, P.M., J. Geophys. Res.: Planets, 2012, vol. 117, no. E12. https://doi.org/10.1029/2012JE004118

  255. Bannister, N.P., Fraser, G.W., Lindsay, S.T., Martindale, A., and Talboys, D.L., Planet. Space Sci., 2012, vol. 69, p. 28. https://doi.org/10.1016/j.pss.2012.05.006

    Article  Google Scholar 

  256. Weider, S.Z., Nittler, L.R., Starr, R.D., McCoy, T.J., and Solomon, S.C., Icarus, 2014, vol. 235, p. 170. https://doi.org/10.1016/j.icarus.2014.03.002

    Article  CAS  Google Scholar 

  257. Starr, R.D., Schlemm, IIC.E., Ho, G.C., Nittler, L.R., Gold, R.E., and Solomon, S.C., Planet. Space Sci., 2016, vol. 122, p. 13. https://doi.org/10.1016/j.pss.2016.01.003

    Article  CAS  Google Scholar 

  258. Nittler, L.R., Frank, E.A., Weider, Sh.Z., Crapster-Pregont, E., Vorburger, A., Starr, R.D., and Solomon, S.C., Icarus, 2020, vol. 345, p. 113716. https://doi.org/10.1016/j.icarus.2020.113716

    Article  CAS  Google Scholar 

  259. Korablev, O., Gerasimov, M., Brad, DaltonJ., Hand, K., Lebreton, J.-P., and Webster, C., Adv. Space Res., 2011, vol. 48, p. 702. https://doi.org/10.1016/j.asr.2010.12.010

    Article  CAS  Google Scholar 

  260. Duffard, R., Kumar, K., Pirrotta, S., Salatti, M., Kubínyi, M., Derz, U., Armytage, R.M.G., Arloth, S., Donati, L., Duricic, A., Flahaut, J., Hempel, S., Pollinger, A., and Poulsen, S., Adv. Space Res., 2011, vol. 48, p. 120. https://doi.org/10.1016/j.asr.2011.02.013

    Article  CAS  Google Scholar 

  261. Bridges, J.C., Burchell, M.J., Changela, H.C., Foster, N.J., Creighton, J.A., Carpenter, J.D., Gurman, S.J., Franchi, I.A., and Busemann, H., Meteorit. Planet. Sci., 2010, vol. 45, no. 1, p. 55. https://doi.org/10.1111/j.1945-5100.2009.01005.x

    Article  CAS  Google Scholar 

  262. Grun, E., Sternovsky, Z., Horanyi, M., Hoxie, V., Robertson, S., Xi, J., Auer, S., Landgraf, M., Postberg, F., Price, M.C., Srama, R., Starkey, N.A., Hillier, J.K., Franchi, I.A., Tsou, P., Westphal, A., and Gainsforth, Z., Planet. Space Sci., 2012, vol. 60, p. 261. https://doi.org/10.1016/j.pss.2011.09.006

    Article  CAS  Google Scholar 

  263. Meyer, A., Grotefend, S., Gross, A., Watzig, H., and Ott, I., J. Pharm. Biomed. Anal., 2012, vol. 70, p. 713.

    Article  CAS  PubMed  Google Scholar 

  264. Marguí, E., Queralt, I., and Hidalgo, M., Spectrochim. Acta, Part B, 2013, vol. 86, p. 50.

    Article  Google Scholar 

  265. Nevolova, S. and Skladal, P., Microchim. Acta, 2022, vol. 189, p. 163. https://doi.org/10.1007/s00604-022-05215-7

    Article  CAS  Google Scholar 

  266. Bakand, S., Hayes, A., and Dechsakulthorn, F., Inhalation Toxicol., 2012, vol. 24, no. 2, p. 125. https://doi.org/10.3109/08958378.2010.642021

    Article  CAS  Google Scholar 

  267. Lombi, E., Scheckel, K.G., and Kempson, I.M., Environ. Exp. Bot., 2011, vol. 72, p. 3. https://doi.org/10.1016/j.envexpbot.2010.04.005

    Article  CAS  Google Scholar 

  268. Bertoni, M.I., Sarau, G., Fenning, D.P., Rinio, M., Rose, V., Maser, J., and Buonassisi, T., Proc. 38th IEEE Photovoltaic Specialists Conf., Austin, TX, 2012, p. 001613. https://doi.org/10.1109/PVSC.2012.6317904.

  269. Lubeck, J., Beckhoff, B., Fliegauf, R., Holfelder, I., Hönicke, P., Müller, M., Pollakowski, B., Reinhardt, F., and Weser, J., Rev. Sci. Instrum., 2013, vol. 84, p. 045106. https://doi.org/10.1063/1.4798299

    Article  CAS  PubMed  Google Scholar 

  270. Nazemi, Z., Mehdikhani-Nahrkhalaji, M., Haghbin-Nazarpak, M., Staji, M., and Kalani, M.M., Appl. Phys. A, 2016, vol. 122, p. 1063. https://doi.org/10.1007/s00339-016-0587-5

    Article  CAS  Google Scholar 

  271. Manohar, N., Reynoso, F.J., Diagaradjane, K.S., and Cho, S.H., Sci. Rep., 2016, vol. 6, p. 22079. https://doi.org/10.1038/srep22079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Streli, C., Rauwolf, M., Turyanskaya, A., Ingerle, D., and Wobrauschek, P., Appl. Radiat. Isot., 2019, vol. 149, p. 200. https://doi.org/10.1016/j.apradiso.2019.04.033

    Article  CAS  PubMed  Google Scholar 

  273. Jung, S., X-Ray Spectrom., 2023, vol. 52, no. 1, p. 28. https://doi.org/10.1002/xrs.3302

    Article  CAS  Google Scholar 

  274. Recknagel, S., Bresch, H., Kipphardt, H., Koch, M., Rosner, M., and Resch-Genger, U., Anal. Bioanal. Chem., 2022, vol. 414, p. 4281. https://doi.org/10.1007/s00216-022-03996-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Revenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revenko, A.G., Pashkova, G.V. X-Ray Fluorescence Spectrometry: Current Status and Prospects of Development. J Anal Chem 78, 1452–1468 (2023). https://doi.org/10.1134/S1061934823110072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823110072

Keywords:

Navigation