Skip to main content
Log in

Determination of Lignin, Cellulose, and Hemicellulose in Plant Materials by FTIR Spectroscopy

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A procedure for determining concentrations of lignin, cellulose, and hemicellulose in plant materials using Fourier-transform IR spectroscopy in the middle spectral region was developed and tested. The procedure is based on the use of calibration functions reflecting the dependence of the intensity of analytical absorption bands on the concentration of lignin (1512 cm–1) and cellulose (1450 cm–1) in model samples; for hemicellulose, indirect correlations were used. The model samples were ternary mixtures consisting of lignin, bacterial cellulose, and hemicellulose in various proportions. The proposed method was tested on a wide range of plant biomass samples; it demonstrated adequate precision (RSD no more than 4%). The accuracy of the procedure for determining the main components of plant biomass (lignin, cellulose, and hemicellulose) was demonstrated using the standard addition method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Obolenskaya, A.V., El’nitskaya, Z.P., and Leonovich, A.A., Laboratornye raboty po khimii drevesiny i tsellyulozy (Laboratory Work on the Chemistry of Wood and Cellulose), Moscow: Ekologiya, 1991.

  2. Baeza, J. and Freer, J., in Wood and Cellulosic Chemistry, Hon, D.N.S. and Shiraishi, D.N.S, Eds., Boca Raton, FL: CRC Press, 2000, p. 275. https://doi.org/10.1201/9781482269741

  3. Tian, X., Fang, Z., Smith, R.L., Wu, Z., and Liu, M., in Production of Biofuels and Chemicals from Lignin, Fang, Zh. and Smith, R.L., Eds., Singapore: Springer, 2016, p. 3. https://doi.org/10.1007/978-981-10-1965-4_1

  4. Tappi T222 Om-02: Acid-Insoluble Lignin in Wood and Pulp, TAPPI Test Methods, 2006. https://www.tappi.org/content/SARG/T222.pdf. Accessed November 18, 2022.

  5. Castillo, R.P., Peña-Farfal, C., Neira, Y., and Freer, J., in Fourier Transform Infrared Spectroscopy (FTIR): Methods, Analysis and Research Insights, Moore E., Ed., New York: Nova Science, 2016, p. 36.

    Google Scholar 

  6. Karklin’, B.N., Treimanis, A.P., and Gromov, V.S., Khim. Drevesiny, 1975, no. 2, p. 52.

  7. Karklin’, V.B., Eidus, Ya.A., and Kreitsberg, Z.N., Khim. Drevesiny, 1977, no. 4, p. 90.

  8. Derkacheva, O.Yu. and Tsypkin, D.O., J. Appl. Spectrosc., 2018, vol. 84, no. 6, p. 1071. https://doi.org/10.1007/s10812-018-0588-6

    Article  CAS  Google Scholar 

  9. Afanas’ev, N.I., Lichutina, T.F., Rusakova, M.A., Prokshin, G.F., Vishnyakova, A.P., Sukhov, D.A., and Derkacheva, O.Y., Russ. J. Appl. Chem., 2006, vol. 79, no. 10, p. 1689. https://doi.org/10.1134/S1070427206100260

    Article  CAS  Google Scholar 

  10. Derkacheva, O.Yu., Sukhov, D.A., and Fedorov, A.V., Vestn. Tver. Gos. Univ., Ser.: Khim., 2017, no. 1, p. 71.

  11. Fiskari, J., Derkacheva, O., Kulomaa, T., and Sukhov, D., Cellul. Chem. Technol., 2016, vol. 50, no. 2, p. 217.

    Google Scholar 

  12. Fiskari, J., Derkacheva, O., and Kulomaa, T., Cellul. Chem. Technol., 2021, vol. 55, nos. 3–4, p. 270. https://doi.org/10.35812/CELLULOSECHEMTECHNOL.2021.55.26

    Article  Google Scholar 

  13. Traoré, M., Kaal, J., and Martínez Cortizas, A., Spectrochim. Acta, Part A, 2016, vol. 153, p. 63. https://doi.org/10.1016/j.saa.2015.07.108

    Article  CAS  Google Scholar 

  14. Pozhidaev, V.M., Sergeeva, Y.E., Yatsishina, E.B., Retivov, V.M., Panarina, E.I., and Zhdanovich, O.A., J. Anal. Chem., 2019, vol. 74, no. 12, p. 1192. https://doi.org/10.1134/S1061934819120104

    Article  CAS  Google Scholar 

  15. Pozhidaev, V.M., Sergeeva, Y.E., Malakhov, S.N., and Yatsishina, E.B., J. Anal. Chem., 2021, vol. 76, no. 5, p. 573. https://doi.org/10.1134/S1061934821050142

    Article  CAS  Google Scholar 

  16. Pandey, K.K., J. Appl. Polym. Sci., 1999, vol. 71, no. 12, p. 1975. https://doi.org/10.1002/(sici)1097-4628(19990321)71:12<1969::aid-app6>3.0.co;2-d

    Article  Google Scholar 

  17. Traoré, M., Kaal, J., and Martínez Cortizas, A., Wood Sci. Technol., 2018, vol. 52, no. 2, p. 487. https://doi.org/10.1007/s00226-017-0967-9

    Article  CAS  PubMed  Google Scholar 

  18. Xu, F., Yu, J., Tesso, T., Dowell, F., and Wang, D., Appl. Energy, 2013, vol. 104, p. 809. https://doi.org/10.1016/j.apenergy.2012.12.019

    Article  CAS  Google Scholar 

  19. Gogna, M. and Goacher, R.E., BioResources, 2018, vol. 13, no. 1, p. 846. https://doi.org/10.15376/biores.13.1.846-860

    Article  CAS  Google Scholar 

  20. Wang, Y., Xiang, J., Tang, Y., Chen, W., and Xu, Y., Appl. Spectrosc. Rev., 2022, vol. 57, no. 4, p. 300. https://doi.org/10.1080/05704928.2021.1875481

    Article  Google Scholar 

  21. Javier-Astete, R., Jimenez-Davalos, J., and Zolla, G., PLoS One, 2021, vol. 16, no. 10, p. e0256559. https://doi.org/10.1371/journal.pone.0256559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Toscano, G., Maceratesi, V., Leoni, E., Stipa, P., Laudadio, E., and Sabbatini, S., Fuel, 2022, vol. 313, p. 123017. https://doi.org/10.1016/j.fuel.2021.123017

    Article  CAS  Google Scholar 

  23. Acquah, G.E., Via, B.K., Fasina, O.O., and Eckhardt, L.G., J. Anal. Methods Chem., 2016, vol. 2016, p. 1839598. https://doi.org/10.1155/2016/1839598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Popescu, C.-M., Jones, D., Krzisnik, D., and Humar, M., J. Mol. Struct., 2020, vol. 1200, p. 127133. https://doi.org/10.1016/j.molstruc.2019.127133

    Article  CAS  Google Scholar 

  25. Funda, T., Fundova, I., Gorzsas, A., Fries, A., and Wu, H.X., Wood Sci. Technol., 2020, vol. 54, no. 2, p. 289. https://doi.org/10.1007/s00226-020-01159-4

    Article  CAS  Google Scholar 

  26. Vârban, R., Crișan, I., Vârban, D., Ona, A., Olar, L., Stoie, A., and Ștefan, R., Appl. Sci., 2021, vol. 11, no. 18, p. 8570. https://doi.org/10.3390/app11188570

    Article  CAS  Google Scholar 

  27. Grigoryevich, A.B., Semyon, M., Alexander, M., and Leonidovich, Y.R., J. Appl. Eng. Sci., 2020, vol. 18, no. 4, p. 624. https://doi.org/10.5937/jaes0-29431

    Article  Google Scholar 

  28. Lehto, J., Louhelainen, J., Klosinska, T., Drozdzek, M., and Alen, R., Characterization of alkali-extracted wood by ftir-atr spectroscopy, Biomass Convers. Biorefin., 2018, vol. 8, no. 4, p. 847. https://doi.org/10.1007/s13399-018-0327-5

    Article  Google Scholar 

  29. Mamleeva, N.A., Shumyantsev, A.V., and Kharlanov, A.N., Russ. J. Phys. Chem., 2021, vol. 95, p. 682. https://doi.org/10.31857/S0044453721040166

    Article  CAS  Google Scholar 

  30. Weiwei, Z., Xiangdong, Ch., Guohui, L., Gaoping, J., Ye, L., Guoqiang, L., Choong, Y.K., and Jin, L., Spectrochim. Acta, Part A, 2022, vol. 266, p. 120443. https://doi.org/10.1016/j.saa.2021.120443

    Article  CAS  Google Scholar 

  31. Kumar, B., Bhardwaj, N., Agrawal, K., Chaturvedi, V., and Verma, P., Fuel Process. Technol., 2020, vol. 199, p. 106244. https://doi.org/10.1016/j.fuproc.2019.106244

    Article  CAS  Google Scholar 

  32. Nanda, S., Mohammad, J., Reddy, S.N., Kozinski, J.A., and Dalai, A.K., Biomass Convers. Biorefin., 2013, no. 4, p. 191. https://doi.org/10.1007/s13399-013-0097-z

  33. Revin, V.V., Liyas’kina, E.V., Sapunova, N.B., and Bogatyreva, A.O., Microbiology, 2020, vol. 89, p. 95. https://doi.org/10.1134/S0026261720010130

    Article  Google Scholar 

  34. da Silva Braga, R. and Poletto, M., Materials, 2020, vol. 13, no. 4, p. 941. https://doi.org/10.3390/ma13040941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fai, O. and Böttcher, J.H., Holz Roh- Werkst., 1992, vol. 50, no. 6, p. 221. https://doi.org/10.1007/BF02650312

    Article  Google Scholar 

  36. GOST (State Standard) R 56881-2016: Biomass. Determination of the Ash Content by Standard Method, Moscow: Standartinform, 2019.

  37. Bazarnova, N.G., Karpova, E.V., Katrakov, I.B., Markin, V.I., Mikushina, I.V., Ol’khov, Yu.A., and Khudenko, S.V., Metody issledovaniya drevesiny i ee proizvodnykh (Methods to Study Wood and Its Derivatives), Barnaul: Altai. Gos. Univ., 2002.

  38. Galletti, A.M., D’Alessio, A., Licursi, D., Antonet-ti, C., Valentini, G., Galia, A., and Di Nasso, N.N., J. Spectrosc., 2015, vol. 2015, p. 719042. https://doi.org/10.1155/2015/719042

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Kostryukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostryukov, S.G., Matyakubov, H.B., Masterova, Y.Y. et al. Determination of Lignin, Cellulose, and Hemicellulose in Plant Materials by FTIR Spectroscopy. J Anal Chem 78, 718–727 (2023). https://doi.org/10.1134/S1061934823040093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823040093

Keywords:

Navigation