Skip to main content
Log in

The Experimental Study of Evaporation of Water and Nanofluid Droplets on the Surfaces of Materials with Different Thermal Conductivities

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract—

The article presents the results of experimental studying evaporation of water and nanofluid droplets on the surfaces of various materials. Plates made of materials with significantly different thermal conductivity coefficients have been used as substrates: copper (λ = 401 W/m °С), Teflon (λ = 0.25 W/m °С), and extruded foamed polystyrene (λ = 0.03 W/m °С). In the experiments, the evaporation of water and nanofluid droplets with a volume of 5 μL has been considered at a constant temperature and humidity of the ambient air. A nanofluid (a mixture of water with gold nanoparticles) has been prepared by laser ablation. The concentration of nanoparticles in the nanofluid is about 0.1 wt %. Infrared thermography has been employed to determine the average temperatures of evaporating droplet surfaces. The results obtained have shown that, for all studied materials, the surface temperature of evaporating water droplets is higher than the temperature of adiabatic evaporation. Therewith, the lower the thermal conductivity coefficient of a substrate material, the lower the surface temperature of the droplet and the longer the time of its evaporation. The performed experiments have shown that the minimum temperature of nanofluid droplets is lower than that of water droplets, and the evaporation time of nanofluid droplets is longer than that of water droplets on the corresponding surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Ranz, W.E. and Marshall, W.R., Evaporation from drops, Chem. Eng. Prog., 1952, vol. 48, no. 3, pp. 141–146.

    CAS  Google Scholar 

  2. Fuchs, N.A., Evaporation and Droplet Growth in Gaseous Media, Pergamon Press, 1959.

    Google Scholar 

  3. Picknett, R.G. and Bexon, R., The evaporation of sessile or pendant drops in still air, J. Colloid Interface Sci., 1977, vol. 61, no. 2, pp. 336–350.

    Article  CAS  Google Scholar 

  4. Law, C.K., Recent advances in droplet vaporization and combustion, Prog. Energy Combust. Sci., 1982, vol. 8, no. 3, pp. 171–201.

    Article  CAS  Google Scholar 

  5. Cazabat, A.M. and Guena, G., Evaporation of macroscopic sessile droplets, Soft Matter, 2010, vol. 6, no. 12, pp. 2591–2612.

    Article  CAS  Google Scholar 

  6. Erbil, H.Y., Evaporation of pure liquid sessile and spherical suspended drops: A review, Adv. Colloid Interface Sci., 2012, vol. 170, nos. 1–2, pp. 67–86.

    Article  CAS  PubMed  Google Scholar 

  7. Hu, H. and Larson, R.G., Evaporation of a sessile droplet on a substrate, J. Phys. Chem. B, 2002, vol. 106, no. 6, pp. 1334–1344.

    Article  CAS  Google Scholar 

  8. Brutin, D., Sobac, B., and Nicloux, C., Influence of substrate nature on the evaporation of a sessile drop of blood, J. Heat Transfer, 2012, vo. 134, no. 6.

  9. Kuchma, A.E., Esipova, N.E., Mikheev, A.A., et al., Evaporation dynamics of a binary sessile droplet: Theory and comparison with experimental data on a droplet of a sulfuric-acid solution, Colloid J., 2017, vol. 79, no. 6, pp. 779–787.

    Article  CAS  Google Scholar 

  10. Ozturk, T. and Erbil, H.Y., Evaporation of water-ethanol binary sessile drop on fluoropolymer surfaces: Influence of relative humidity, Colloids Surf., A, 2018, vol. 553, pp. 327–336.

    Article  CAS  Google Scholar 

  11. Chulkova, E.V., et al., Elimination of wetting study flaws in unsaturated vapors based on Laplace fit parameters, Surf. Innovations, 2020, vol. 1, no. 10, pp. 21–24.

    Google Scholar 

  12. Borodulin, V.Y., Letushko, V.N., Nizovtsev, M.I., et al., The experimental study of evaporation of water–alcohol solution droplets, Colloid J., 2019, vol. 81, no. 3, pp. 219–225.

    Article  CAS  Google Scholar 

  13. Borodulin, V.Y., Letushko, V.N., Nizovtsev, M.I., et al., Influence of relative air humidity on evaporation of water–ethanol solution droplets, Colloid J., 2021, vol. 83, no. 3, pp. 277–283.

    Article  CAS  Google Scholar 

  14. Terekhov, V.I. and Shishkin, N.E., Influence of a surfactant on evaporation intensity of suspended water droplets, Colloid J., 2021, vol. 83, no. 1, pp. 135–141.

    Article  CAS  Google Scholar 

  15. Gatapova, E.Y., Semenova, A., Zaitsev, D.V., and Kabov, O.A., Evaporation of a sessile water drop on a heated surface with controlled wettability, Colloids Surf., A, 2014, pp. 776–785.

  16. Savenko, O.A. and Lebedev-Stepanov, P.V., Quasi-stationary evaporation of a small liquid droplet on a flat substrate: Analytical solution in bipolar coordinates, Colloid J., 2022, vol. 84, no. 3, pp. 312–320.

    Article  CAS  Google Scholar 

  17. David, S., Sefiane, K., and Tadrist, L., Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops, Colloids Surf., A, 2007, vol. 298, nos. 1–2, pp. 108–114.

    Article  CAS  Google Scholar 

  18. Dunn, G.J., et al., The strong influence of substrate conductivity on droplet evaporation, J. Fluid Mech., 2009, vol. 623, pp. 329–351.

    Article  CAS  Google Scholar 

  19. Sobac, B. and Brutin, D., The strong influence of substrate conductivity on droplet evaporation, Phys. Rev. E, 2012, vol. 86, no. 2, p. 021602.

    Article  CAS  Google Scholar 

  20. Bazargan, V. and Stoeber, B., Effect of substrate conductivity on the evaporation of small sessile droplets, Phys. Rev. E, 2016, vol. 94, no. 3, p. 033103.

    Article  PubMed  Google Scholar 

  21. Lopes, M.C., et al., Influence of the substrate thermal properties on sessile droplet evaporation: Effect of transient heat transport, Colloids Surf., A, 2013, vol. 432, pp. 64–70.

    Article  CAS  Google Scholar 

  22. Han, K., et al., An experimental and theoretical study of the effect of suspended thermocouple on the single droplet evaporation, Appl. Therm. Eng., 2016, vol. 101, pp. 568–575.

    Article  CAS  Google Scholar 

  23. Terekhov, V. I. and Shishkin, N. E., Surface temperature of evaporating droplets of binary solutions, Polzunovskii Vestnik, 2010, no. 1, pp. 55–59.

  24. Nakoryakov, V.E., Misyura, S.Y., and Elistratov, S.L., Boiling crisis in droplets of ethanol water solution on the heating surface, J. Eng. Thermophys., 2013, vol. 22, no. 1, pp. 1–6.

    Article  CAS  Google Scholar 

  25. Bochkareva, E.M., et al., Integrated experimental and theoretical study of evaporation process of nonideal solutions, J. Phys.: Conf. Ser., IOP Publishing, 2017, vol. 891, no. 1, p. 012010.

    Google Scholar 

  26. Vysotskii, V.V., Roldughin, V.I., Uryupina, O.Y. et al., Percolation transitions in composites formed by the evaporation of droplets of silver nanoparticle dispersions, Colloid J., 2011, vol. 73, no. 2, pp. 176–184.

    Article  CAS  Google Scholar 

  27. Vysotskii, V.V., Roldughin, V.I., Uryupina, O.Y., et al., Evaporation of droplets of silver nanoparticle dispersions on metal surfaces, Colloid J., 2014, vol. 76, no. 5, pp. 531–538.

    Article  CAS  Google Scholar 

  28. Vysotskii, V.V., Roldughin, V.I., Uryupina, O.Y., et al., Effect of temperature on ring-shaped-deposit formated at evaporation of droplets of silver-nanoparticle dispersions, Colloid J., 2017, vol. 79, no. 2, pp. 190–197.

    Article  CAS  Google Scholar 

  29. Zaibudeen, A.W. and Bandyopadhyay, R., Correlating the drying kinetics and dried morphologies of aqueous colloidal gold droplets of different particle concentrations, Colloids Surf., A, 2022, vol. 646, p. 128982.

    Article  CAS  Google Scholar 

  30. Gan, Y. and Qiao, L., Evaporation characteristics of fuel droplets with the addition of nanoparticles under natural and forced convections, Int. J. Heat Mass Transfer, 2011, vol. 54, nos. 23–24, pp. 4913–4922.

    Article  CAS  Google Scholar 

  31. Dmitriev, A.S. and Makarov, P.G., On liquid evaporation from droplets of colloidal solutions of SiO2 and Fe2O3 nanoparticles, Colloid J., 2015, vol. 77, no. 2, pp. 135–142.

    Article  CAS  Google Scholar 

  32. Starinskaya, E.M., et al., Effect of SiO2 nanoparticle addition on the evaporation of a suspended water droplet, Heat Transfer Res., 2022, vol. 53, no. 9.

  33. Starinskaya, E.M., et al., Investigation of heat transfer during evaporation of droplets of Fe3O4 nanofluids from biphilic surfaces, J. Phys.: Conf. Ser., IOP Publishing, 2021, vol. 2119, no. 1, p. 012083.

    Google Scholar 

  34. Nesterenko, A.V., Osnovy termodinamicheskikh raschetov ventilyatsii i konditsionirovaniya vozdukha. Uchebnoe posobie (Fundamentals of Thermodynamic Calculations of Ventilation and Air Conditioning. Textbook), Moscow: Vysshaya Shkola, 1971, 3rd ed.

  35. Starinskiy, S.V., et al., Comparison of structures of gold nanoparticles synthesized by pulsed laser ablation and magnetron sputtering, J. Struct. Chem., 2017, vol. 58, no. 8, pp. 1581–1587.

    Article  CAS  Google Scholar 

  36. Starinskii, S. V., Shukhov, Yu. G., and Bulgakov, A. V., Influence of nanoparticle sizes on the extinction spectrum of colloidal solutions obtained by laser ablation of gold in water, Kvantovaya Elektron., 2017, vol. 47, no. 4, pp. 343–346.

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors are grateful to S.V. Starinskii, senior researcher of the Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, for the preparation of the nanofluid for the experiments.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, megagrant no. 2020-220-08-1436 (agreement no. 075-15-2021-575).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Sterlyagov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterlyagov, A.N., Nizovtsev, M.I. The Experimental Study of Evaporation of Water and Nanofluid Droplets on the Surfaces of Materials with Different Thermal Conductivities. Colloid J 85, 80–86 (2023). https://doi.org/10.1134/S1061933X22600543

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X22600543

Navigation