Skip to main content
Log in

Some Estimates for p-Adic Rough Multilinear Hausdorff Operators and Commutators on Weighted Morrey–Herz Type Spaces

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

The aim of this paper is to introduce and study the boundedness of a new class of p-adic rough multilinear Hausdorff operators on the product of Herz, central Morrey and Morrey–Herz spaces with both power weights and Muckenhoupt weights. We also establish the boundedness for the commutators of p-adic rough multilinear Hausdorff operators on the weighted spaces with symbols in central BMO space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio, A.Yu. Khrennikov, and V. M. Shelkovich, “Harmonic Analysis in the p–Adic Lizorkin Spaces: Fractional Operators, Pseudo–Differential Equations, p–Wavelets, Tauberian Theorems,” J. Fourier Anal. Appl. 12 (4), 393–425 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. V. Avetisov, A. H. Bikulov, S. V. Kozyrev, and V. A. Osipov, “p–Adic Models of Ultrametric Diffusion Constrained by Hierarchical Energy Landscapes,” J. Phys. A 35, 177–189 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. A. V. Avetisov, A. H. Bikulov, and V. A. Osipov, “p–Adic Description of Characteristic Relaxation in Complex Systems,” J. Phys. A 36, 4239–4246 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. K. F. Andersen and B. Muckenhoupt, “Weighted Weak Type Hardy Inequalities with Applications to Hilbert Transforms and Maximal Functions,” Studia Math. 72 (1), 9–26 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  5. O. V. Beloshapka, “Feynman Formulas for the Schrödinger Equations with the Vladimirov Operator,” Russ. J. Math. Phys. 17 (3), 267–271 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Carton–Lebrun and M. Fosset, “Moyennes et quotients de Taylor dans BMO,” Bull. Soc. Roy. Sci. Liége 53 (2), 85–87 (1994).

    MathSciNet  MATH  Google Scholar 

  7. R. R. Coifman, R. Rochberg, and G. Weiss, “Factorization Theorems for Hardy Spaces in Several Variables,” Ann. Math. 103, 611–635 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Chen, D. Fan and J. Li, “Hausdorff Operators on Function Spaces,” Chinese Ann. Math. Ser. B. 33, 537–556 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  9. N. M. Chuong, Pseudodifferential Operators and Wavelets over Real and pAdic Fields (Springer–Basel, 2018).

    Book  MATH  Google Scholar 

  10. N. M. Chuong, Yu. V. Egorov, A. Yu. Khrennikov, Y. Meyer, and D. Mumford, Harmonic, Wavelet and pAdic Analysis (World Scientific, 2007).

    Book  MATH  Google Scholar 

  11. N. M. Chuong, and D. V. Duong, “Wavelet Bases in the Lebesgue Spaces on the Field of p–Adic Numbers,” p−Adic numbers, Ultrametric Anal. Appl. 5 (2), 106–121 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  12. N. M. Chuong and D. V. Duong, “Weighted Hardy–Littlewood Operators and Commutators on p−Adic Functional Spaces,” p−Adic numbers, Ultrametric Anal. Appl. 5 (1), 65–82 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  13. N. M. Chuong and D. V. Duong, “The p–Adic Weighted Hardy–Cesàro Operators on Weighted Morrey–Herz Space,” p−Adic numbers, Ultrametric Anal. Appl. 8 (3), 204–216 (2016).

    Article  MATH  Google Scholar 

  14. N. M. Chuong and N. V. Co, “The Cauchy Problem for a Class of Pseudo–Differential Equations over p–Adic Field,” J. Math. Anal. Appl. 340 (1), 629–643 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. N. M. Chuong and H. D. Hung, “Maximal Functions and Weighted Norm Inequalities on Local Fields,” Appl. Comput. Harmon. Anal. 29, 272–286 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, and I. V. Volovich, “On p−Adic Mathematical Physics,” p−Adic numbers, Ultrametric Anal. Appl. 1 (1), 1–17 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Grafakos, Modern Fourier Analysis (Second Edition, Springer, 2008).

    MATH  Google Scholar 

  18. H. D. Hung, “The p–Adic Weighted Hardy–Cesàro Operator and an Application to Discrete Hardy Inequalities,” J. Math. Anal. Appl. 409, 868–879 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Hytönen, C. Pérez, and E. Rela, “Sharp Reverse Hölder Property for A∞ Weights on Spaces of Homogeneous Type,” J. Funct. Anal. 263, 3883–3899 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Indratno, D. Maldonado, and S. Silwal, “A Visual Formalism for Weights Satisfying Reverse Inequalities,” Expo. Math. 33, 1–29 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Haran, “Riesz Potentials and Explicit Sums in Arithmetic,” Invent. Math. 101, 697–703 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. S. Haran, “Analytic Potential Theory over the p–Adics,” Ann. Inst. Fourier (Grenoble) 43 (4), 905–944 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  23. A.Yu. Khrennikov, pAdic Valued Distributions in Mathematical Physics (Kluwer Academic Publishers, Dordrecht–Boston–London, 1994).

    Book  MATH  Google Scholar 

  24. A.Yu. Khrennikov, V. M. Shelkovich, and M. Skopina, “p–Adic Refinable Functions and MRA–Based Wavelets,” J. Approx. Theory 161, 226–238 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. V. Kozyrev, “Methods and Applications of Ultrametric and p–Adic Analysis: From Wavelet Theory to Biophysics,” Proc. Steklov Inst. Math. 274, 1–84 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  26. Z. W. Fu, Z. G. Liu, and S. Z. Lu, “Commutators of Weighted Hardy Operators,” Proc. Amer. Math. Soc. 137, 3319–3328 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  27. Z. W. Fu, Q. Y. Wu, and S. Z. Lu, “Sharp Estimates of p–Adic Hardy and Hardy–Littlewood–P´olya Operators,” Acta Math. Sin. 29, 137–150 (2013).

    Article  MATH  Google Scholar 

  28. S. Lu, Y. Ding, and D. Yan, Singular Integrals and Related Topics (World Scientific Publishing Company, Singapore, 2007).

    Book  MATH  Google Scholar 

  29. C. Morrey, “On the Solutions of Quasi–Linear Elliptic Partial Differential Equations,” Trans. Amer. Math. Soc. 43, 126–166 (1938).

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Muckenhoupt, “Weighted Norm Inequalities for the Hardy Maximal Function,” Trans. Amer. Math. Soc. 165, 207–226 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Ruan, D. Fan, and Q. Wu, “Weighted Herz Space Estimates for Hausdorff Operators on the Heisenberg Group,” Banach J. Math. Anal. 11, 513–535 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Ruan, D. Fan, and Q. Wu, “Weighted Morrey Estimates for Hausdorf Op–erator and Its Commutator on the Heisenberg Group,” Math. Inequal. Appl. 22 (1), 303–329 (2019).

    Google Scholar 

  33. K. S. Rim and J. Lee, “Estimates ofWeighted Hardy–Littlewood Averages on the p–Adic Vector Space,” J. Math. Anal. Appl. 324 (2), 1470–1477 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  34. Elias M. Stein, Harmonic Analysis, Real–Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton University Press, 1993).

    MATH  Google Scholar 

  35. C. Tang, F. Xue, and Y. Zhou, “Commutators of Weighted Hardy Operators on Herz–Type Spaces,” Ann. Polon. Math. 101, 267–273 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  36. V. S. Varadarajan, “Path Integrals for a Class of p–Adic Schrödinger Equations,” Lett. Math. Phys. 39, 97–106 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  37. V. S. Vladimirov, “Tables of Integrals of Complex–Valued Functions of p–Adic Arguments,” Proc. Steklov Inst. Math. 284 (2), 1–59 (2014).

    Article  MathSciNet  Google Scholar 

  38. V. S. Vladimirov and I. V. Volovich, “p–Adic Quantum Mechanics,” Comm. Math. Phys. 123, 659–676 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, pAdic Analysis and Mathematical Physis (World Scientific, 1994).

    Book  MATH  Google Scholar 

  40. S. S. Volosivets, “Multidimensional Hausdorff Operator on p–Adic Field,” p–Adic numbers, Ultrametric Anal. Appl. 2, 252–259 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  41. S. S. Volosivets, “Hausdorff Operator of Special Kind in Morrey and Herz p–Adic Spaces,” p–Adic numbers, Ultrametric Anal. Appl. 4, 222–230 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  42. S. S. Volosivets, “Hausdorff Operators on p–Adic Linear Spaces and Their Properties in Hardy, BMO, and Hölder Spaces,” Math. Notes 3, 382–391 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  43. S. S. Volosivets, “Weak and Strong Estimates for Rough Hausdorff Type Operator Defined on p–Adic Linear Space,” p–Adic numbers, Ultrametric Anal. Appl. 9 (3), 236–241 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  44. Q. Y. Wu, L. Mi, and Z. W. Fu, “Boundedness of p–Adic Hardy Operators and Their Commutators on p–Adic Central Morrey and BMO Spaces,” J. Funct. Spaces Appl. (2013), Article ID 359193, 10 pages.

    Google Scholar 

  45. J. Xiao, “L p and BMO Bounds of Weighted Hardy–Littlewood Averages,” J. Math. Anal. Appl. 262, 660–666 (2001).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Chuong, D. V. Duong or K. H. Dung.

Additional information

This paper is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2014.51.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuong, N.M., Duong, D.V. & Dung, K.H. Some Estimates for p-Adic Rough Multilinear Hausdorff Operators and Commutators on Weighted Morrey–Herz Type Spaces. Russ. J. Math. Phys. 26, 9–31 (2019). https://doi.org/10.1134/S1061920819010023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920819010023

Navigation