Skip to main content
Log in

Synthesizing GCN–xAg Composites and Studying Their Role as Electrochemical Pseudo-Supercapacitor Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract—

Series of Ag-doped graphitic carbon nitride composites (GCN–xAg) is designed and utilized as electrode material for supercapacitors (SC). This is done by changing the amount of silver nitrate initially added to urea by a one-step calcination route. The crystal structure, chemical structure, thermal stability, morphology, all are investigated by Fourier Transform-Infrared Spectroscopy (FT-IR), X-ray Diffraction Spectroscopy (XRD), Thermo Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) respectively. The electrochemical performance of this series has been analyzed by using Cyclic Voltammetry (CV), Galvanostatic Charge-Discharge (GCD), and Electrochemical Impedance Spectroscopy (EIS) measurements. This is found that the 0.9 mmol Ag doped graphitic carbon nitride composite has high specific capacitance 195.3 F/g at 10 mV/s scan rate in 1 M KOH electrolyte solution as compared to pure graphitic carbon nitride (GCN–P) with 21.1 F/g specific capacitance. The specific capacitance of GCN–0.9Ag retains 100.2% after 1000 cycles at 150 mV/s. The energy density of GCN–0.9Ag observes 10.35 W h/kg with admirable power density 135.9 W/kg at 0.5 A/g current density. It is observed that even taking Ag doping as 0.9 mmol, specific capacitance shows a remarkable increase as compared to that of GCN–P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. Kim, B.K., Sy, S., Yu, A., and Zhang, J., Electrochemical supercapacitors for energy storage and conversion, in Handbook of Clean Energy Systems, John Wiley & Sons, 2015, p. 1.

    Google Scholar 

  2. Svasta, P., Negroiu, R., and Vasile, A., Supercapacitors—an alternative electrical energy storage device, Proc. 5th Int. Symp. on Electrical and Electronics Engineering (ISEEE), Galati, 2017, vol. 2017-Decem, p. 1.

  3. Liu, S., Wei, L., and Wang, H., Review on reliability of supercapacitors in energy storage applications, Appl. Energy, 2020, vol. 278, p. 115436.

    Article  CAS  Google Scholar 

  4. Lin, Z., Goikolea, E., Balducci, A., Naoi, K., Taberna, P.L., Salanne, M., Yushin, G., and Simon, P., Materials for supercapacitors: when Li-ion battery power is not enough, Mater. Today, 2018, vol. 21, p. 419.

    Article  CAS  Google Scholar 

  5. Xue, Q., Sun, J., Huang, Y., Zhu, M., Pei, Z., Li, H., Wang, Y., Li, N., Zhang, H., and Zhi, C., Recent progress on flexible and wearable supercapacitors, Small, 2017, vol. 13, p. 1.

    Article  Google Scholar 

  6. Kowal, J., Avaroglu, E., Chamekh, F., Senfelds, A., Thien, T., Wijaya, D., and Sauer, D.U., Detailed analysis of the self-discharge of supercapacitors, J. Power Sources, 2011, vol. 196, p. 573.

    Article  CAS  Google Scholar 

  7. Anon Lamborghini uses supercapacitors in its most powerful car ever.

  8. Bokhari, S.W., Siddique, A.H., Sherrell, P.C., Yue, X., Karumbaiah, K.M., Wei, S., Ellis, A.V., and Gao, W., Advances in graphene-based supercapacitor electrodes, Energy Rep., 2020, vol. 6, p. 2768.

    Article  Google Scholar 

  9. Wu, D.Y. and Shao, J.J., Graphene-based flexible all-solid-state supercapacitors, Mater. Chem. Front., 2021, vol. 5, p. 557.

    Article  CAS  Google Scholar 

  10. Dubey, R. and Guruviah, V., Review of carbon-based electrode materials for supercapacitor energy storage, Ionics (Kiel), 2019, vol. 25, p. 1419.

    Article  CAS  Google Scholar 

  11. Tan, L., Nie, C., Ao, Z., Sun, H., An, T., and Wang, S., Novel two-dimensional crystalline carbon nitrides beyond g-C3N4: structure and applications, J. Mater. Chem. A, 2021, vol. 9, p. 17.

    Article  CAS  Google Scholar 

  12. Wu, S., Wen, S., Xu, X., Huang, G., Cui, Y., Li, J., and Qu, A., Facile synthesis of porous graphene-like carbon nitride nanosheets with high surface area and enhanced photocatalytic activity via one-step catalyst-free solution self-polymerization, Appl. Surf. Sci., 2018, vol. 436, p. 424.

    Article  CAS  Google Scholar 

  13. Wang, A., Wang, C., Fu, L., Wong-Ng, W., and Lan, Y., Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and leds, Nano-Micro Lett., 2017, vol. 9, p. 1.

    Article  Google Scholar 

  14. Dong, G., Zhang, Y., Pan, Q., and Qiu, J., A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties, J. Photochem. Photobiol. C: Photochem. Rev., 2017, vol. 20, p. 33.

    Article  Google Scholar 

  15. Liu, X., Tang, R.Y., Xia, X.M., Qin, Y.Y., and Zhang, X., The study of visible-light photocatalytic degradation activity of Ag doped g-C3N4obtained by heating process, Mater. Res. Express, 2020, vol. 7, p. 115904.

    Article  CAS  Google Scholar 

  16. Faisal, M., Ismail, A.A., Harraz, F.A., Al-Sayari, S.A., El-Toni, A.M., and Al-Assiri, M.S., Synthesis of highly dispersed silver doped g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity, Mater. Des., 2016, vol. 98, p. 223.

    Article  CAS  Google Scholar 

  17. Chen, A.Y., Zhang, T.T., Qiu, Y.J., Wang, D., Wang, P., Li, H.J., Li, Y., Yang, J.H., Wang, X.Y., and Xie, X.F., Construction of nanoporous gold/g-C3N4 heterostructure for electrochemical supercapacitor, Electrochim. Acta, 2019, vol. 294, p. 260.

    Article  CAS  Google Scholar 

  18. Sarangapany, S. and Mohanty, K., Facile green aynthesis of Ag@g-C3N4 for enhanced photocatalytic and catalytic degradation of organic pollutant, J. Clust. Sci., 2021, vol. 32, p. 585.

    Article  CAS  Google Scholar 

  19. Zhao, Y., Xu, L., Huang, S., Bao, J., Qiu, J., Lian, J., Xu, L., Huang, Y., Xu, Y., and Li, H., Facile preparation of TiO2/C3N4 hybrid materials with enhanced capacitive properties for high performance supercapacitors, J. Alloys Compd., 2017, vol. 702, p. 178.

    Article  CAS  Google Scholar 

  20. Palanivel, B., devi Mudisoodum perumal, S., Maiyalagan, T., Jayarman, V., Ayyappan, C., and Alagiri, M., Rational design of ZnFe2O4/g-C3N4 nanocomposite for enhanced photo-Fenton reaction and supercapacitor performance, Appl. Surf. Sci., 2019, vol. 498, p. 143807.

    Article  CAS  Google Scholar 

  21. Verma, C.J., Keshari, A.S., Dubey, P., and Prakash, R., Polyindole modified g-C3N4 nanohybrids via in-situ chemical polymerization for its improved electrochemical performance, Vacuum, 2020, vol. 177, p. 109363.

    Article  CAS  Google Scholar 

  22. Paul, D.R., Sharma, R., Panchal, P., Nehra, S.P., Gupta, A.P., and Sharma, A., Synthesis, characterization and application of silver doped graphitic carbon nitride as photocatalyst towards visible light photocatalytic hydrogen evolution, Int. J. Hydrogen Energy, 2020, vol. 45, p. 23937.

    Article  CAS  Google Scholar 

  23. Yao, S., Xue, S., Peng, S., Jing, M., Qian, X., Shen, X., Li, T., and Wang, Y., Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium-sulfur batteries, J. Mater. Sci. Mater. Electron., 2018, vol. 29, p. 17921.

    Article  CAS  Google Scholar 

  24. Praus, P., Svoboda, L., Dvorský, R., and Reli, M., Nanocomposites of SnO2 and g-C3N4: preparation, characterization and photocatalysis under visible LED irradiation, Ceram. Int., 2017, vol. 44, no. 4, p. 3837.

    Article  Google Scholar 

  25. Yu, Q., Li, X., Zhang, L., Wang, X., Tao, Y., and Zhang, M., Significantly improving the performance and dispersion morphology of porous g-C3N4/PANI composites by an interfacial polymerization method, E-Polymers, 2015, vol. 15, p. 95.

    Article  CAS  Google Scholar 

  26. Dhanda, M., Nehra, S.P., and Lata, S., The amalgamation of g-C3N4 and VO2(D) as a facile electrode for enhanced storage of energy, J. Synthmet., 2022, vol. 286, p. 117046.

    CAS  Google Scholar 

  27. Katsumata, K., Motoyoshi, R., Matsushita, N., and Okada, K., Preparation of graphitic carbon nitride (g‑C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas, J. Hazard. Mater., 2013, vol. 260, p. 475.

    Article  CAS  PubMed  Google Scholar 

  28. Kharlamov, A., Bondarenko, M., Kharlamova, G., and Gubareni, N., Diamond & related materials features of the synthesis of carbon nitride oxide (g-C3N4)O at urea pyrolysis, Diamond Relat. Mater., 2016, vol. 66, p. 16.

    Article  CAS  Google Scholar 

  29. Bojdys, M.J., Muller, J.O., Antonietti, M., and Thomas, A., Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride, Chem. A Eur. J., 2008, vol. 14, p. 8177.

    Article  CAS  Google Scholar 

  30. Sadjadi, S., Malmir, M., and Heravi, M.M., Preparation of Ag-doped g-C3N4 nano sheet decorated magnetic γ-Fe2O3@SiO2 core-shell hollow spheres through a novel hydrothermal procedure: investigation of the catalytic activity for A3, KA2 coupling reactions and [3 + 2] cycloaddition, Appl. Organomet. Chem., 2018, vol. 32, p. 1.

    Article  Google Scholar 

  31. Han, Z., Wang, N., Fan, H., and Ai, S., Ag nanoparticles loaded on porous graphitic carbon nitride with enhanced photocatalytic activity for degradation of phenol, Solid State Sci., 2017, vol. 65, p. 110.

    Article  CAS  Google Scholar 

  32. Paul, D.R., Gautam, S., Panchal, P., Nehra, S.P., Choudhary, P., and Sharma, A., ZnO-modified g-C3N4: a potential photocatalyst for environmental application, ACS Omega, 2020, vol. 5, p. 3828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma, J., Tao, X., Zhou, S., Song, X., and Zhu, Y., Facile fabrication of Ag/PANI/g-C3N4 composite with enhanced electrochemical performance as supercapacitor electrode, J. Electroanal. Chem., 2019, vol. 835, p. 346.

    Article  CAS  Google Scholar 

  34. Nabi, G., Nadeem, K., Nazir, M., Raza, W., Bilal, M., Ra, M., Siddiqa, A., Ali, S.S., Rizwan, M., Shakil, M., and Tanveer, M., Cogent synergic effect of TiS2/g-C3N4 composite with enhanced electrochemical performance for supercapacitor, Ceram. Int., 2020, vol. 46, p. 27601.

    Article  CAS  Google Scholar 

  35. Malik, R., Lata, S., and Malik, R.S., Electrochemical behavior of composite electrode based on sulphonated polymeric surfactant (SPEEK/PSS) incorporated polypyrrole for supercapacitor, J. Electroanal. Chem., 2019, vol. 835, p. 48.

    Article  CAS  Google Scholar 

  36. Isacfranklin, M., Yuvakkumar, R., Ravi, G., Hong, S.I., Shini, F., Thambidurai, M., Dang, C., and Velauthapillai, D., Marigold flower like structured Cu2NiSnS4 electrode for high energy asymmetric solid state supercapacitors, Sci. Rep., 2020, vol. 10, p. 1.

    Article  Google Scholar 

  37. Wang, D., Wang, Y., Chen, Y., Liu, W., Wang, H., Zhao, P., Li, Y., Zhang, J., Dong, Y., Hu, S., and Yang, J., Coal tar pitch derived N-doped porous carbon nanosheets by the in-situ formed g-C3N4 as a template for supercapacitor electrodes, Electrochim. Acta, 2018, vol. 283, p. 132.

    Article  CAS  Google Scholar 

  38. Wang, D.F., Wu, Y.Z., Yan, X.H., Wang, J.J., Wang, Q., Zhou, C., Yuan, X.X., Pan, J.M., and Cheng, X.N., Self-assembly synthesis of AgNPs@g-C3N4 composite with enhanced electrochemical properties for supercapacitors, MRS Commun., 2019, vol. 9, p. 719.

    Article  CAS  Google Scholar 

  39. Wang, X., Yan, T., Li, Y., Liu, Y., Du, B., Ma, H., and Wei, Q., A competitive photoelectrochemical immunosensor based on a CdS-induced signal amplification strategy for the ultrasensitive detection of dexamethasone, Sci. Rep., 2019, vol. 5, p. 1.

    Google Scholar 

  40. Sanati, S. and Rezvani, Z., g-C3N4 nanosheet@CoAl-layered double hydroxide composites for electrochemical energy storage in supercapacitors, Chem. Eng. J., 2019, vol. 362, p. 743.

    Article  CAS  Google Scholar 

  41. Sun, S., Guo, L., Chang, X., Yu, Y., and Zhai, X., MnO2/g-C3N4@PPy nanocomposite for high-performance supercapacitor, Mater. Lett., 2019, vol. 236, p. 558.

    Article  CAS  Google Scholar 

Download references

Funding

The author is grateful to University Grant Commission (UGC), Delhi for providing financial support for this research work to Monika Dhanda as JRF (Ref. no. 201610158088) and also thank DST Haryana, for financial assistance with fellowship reference no. HSCSIT/366.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Lata.

Ethics declarations

Authors have herewith, none to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monika Dhanda, Nehra, S.P. & Lata, S. Synthesizing GCN–xAg Composites and Studying Their Role as Electrochemical Pseudo-Supercapacitor Electrode. Russ J Electrochem 59, 248–261 (2023). https://doi.org/10.1134/S1023193523030047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523030047

Keywords:

Navigation