Skip to main content
Log in

Effect of Light Intensity on Blueberry Fruit Coloration, Anthocyanin Synthesis Pathway Enzyme Activity, and Gene Expression

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The fruit skin color is an important economic trait of blueberries (Vaccinium spp.) and is determined by the concentration of anthocyanins. Light intensity significantly affects anthocyanin accumulation. Anthocyanin content is closely related to enzyme activity and gene expression. In this study, the anthocyanin content, the activity of related enzymes and the expression of genes involved in the development process of 5-year ‘Pink Blue’ cranberry were studied. The results showed that with increasing light intensity, the content of anthocyanin glycosides increased, while that of flavonoids, chlorophylls and carotenoids decreased. Except for chalcone isomerases (CHI) and flavonol synthetases (FLS), all enzymes involved in anthocyanin synthesis showed the same trend as anthocyanin glycosides. The expression of genes for transcription factors, such as VcMYB1 and VcbHLH004, and certain photoreceptor factors were significantly downregulated under shading conditions. Correlation analysis showed that flavonoid 3',5'-hydroxylase (F3'5'H) and VcF3'5'H4 are the key enzymes for anthocyanin glycoside synthesis in blueberry as well as the corresponding enzyme genes. This study provides a foundation for further research on the mechanism of light-induced anthocyanin synthesis in blueberry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Zhao, Y., Dong, W., Wang, K., Zhang, B., Allan, A.C., Lin-Wang, K., Chen, K., and Xu, C., Differential sensitivity of fruit pigmentation to ultraviolet light between two peach cultivars, Front. Plant Sci., 2017, vol. 8, p. 1552. https://doi.org/10.3389/fpls.2017.01552

    Article  PubMed  PubMed Central  Google Scholar 

  2. He, Y.J., Chen. H., Zhou. L., Liu, Y., and Chen, H.Y., Comparative transcription analysis of photosensitive and non-photosensitive eggplants to identify genes involved in dark regulated anthocyanin synthesis, BMC Genomics, 2019, vol. 20, p. 678. https://doi.org/10.1186/s12864-019-6023-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Albert, N.W., Lewis. D.H., Zhang, H., Irving, L.J., Jameson, P.E., and Davies, K.M., Light-induced vegetative anthocyanin pigmentation in Petunia, J. Exp. Bot., 2009, vol. 60, p. 2191. https://doi.org/10.1093/jxb/erp097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jaakola, L., New insights into the regulation of anthocyanin biosynthesis in fruits, Trends Plant Sci., 2013, vol. 18, p. 477. https://doi.org/10.1016/j.tplants.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  5. Zoratti, L., Karppinen, K., Luengo Escobar A., Häggman, H., and Jaakola, L., Light-controlled flavonoid biosynthesis in fruits, Front. Plant Sci., 2014, vol. 5, p. 534. https://doi.org/10.3389/fpls.2014.00534

    Article  PubMed  PubMed Central  Google Scholar 

  6. Macheix, J.J., Fleuriet, A., and Billot, J., Fruit Phenolics, Boca Raton: CRC Press, Florida, USA, 1990, p. 378.

    Google Scholar 

  7. Xu, P.B., Zawora, C., Li, Y., Wu, J., Liu, L.C., Liu, Z.C., Cai, R., and Lian, H.L., Transcriptome sequencing reveals role of light in promoting anthocyanin accumulation of strawberry fruit, Plant Growth Regul., 2018, vol. 86, p. 121. https://doi.org/10.1007/s10725-018-0415-3

    Article  CAS  Google Scholar 

  8. Li, T., Yamane, H., and Tao, R., Preharvest long-term exposure to UV-B radiation promotes fruit ripening and modifes stage-specifc anthocyanin metabolism in highbush blueberry, Hortic. Res., 2021, vol. 8, p. 67. https://doi.org/10.1038/s41438-021-00503-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nguyen, H.M., Putterill, J., Dare, A.P., Plunkett, B.J., Cooney, J., Peng, Y.Y., Souleyre, E.J.F., Albert, N.W., Espley, R.V., and Günther, C.S., Two genes, ANS and UFGT2, from Vaccinium spp. are key steps for modulating anthocyanin production, Front. Plant Sci., 2023, vol. 14, p. 1082246. https://doi.org/10.3389/fpls.2023.1082246

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bennett, C., Sookwong, P., Jakmunee, J., and Mahatheeranont, S., Smartphone digital image colorimetric determination of the total monomeric anthocyanin content in black rice via the pH differential method, Anal. Methods, 2021, vol. 13, p. 3348. https://doi.org/10.1039/d1ay00719j

    Article  CAS  PubMed  Google Scholar 

  11. Tian, T., Qiao, G., Deng, B., Wen, Z., Hong, Y., and Wen, X.P., The effects of rain shelter coverings on the vegetative growth and fruit characteristics of Chinese cherry (Prunus pseudocerasus Lindl.), Sci. Hortic. (Amsterdam, Neth.), 2019, vol. 254, p. 228. https://doi.org/10.1016/j.scienta.2019.04.030

  12. Schraer, S.M., Shaw, D.R., Boyette, M., Coupe, R.H., and Thurman M.E., Comparison of enzyme-linked immunosorbent assay and gas chromatography procedures for the detection of cyanazine and metolachlor in surface water samples, J. Agric. Food Chem., 2000, vol. 48, p. 5881. https://doi.org/10.1021/jf991130y

    Article  CAS  PubMed  Google Scholar 

  13. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 2001, vol. 25, p. 402. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  14. Azuma, A., Yakushiji, H., Koshita, Y., and Kobayashi, S., Flavonoid biosynthesis-related genes in grape skin are dirfferentially regulated by temperature and light conditions, Planta, 2012, vol. 236, p. 1067. https://doi.org/10.1007/s00425-012-1650-x

    Article  CAS  PubMed  Google Scholar 

  15. Sun, L., Li, S.C., Tang, X.P., Fan, X.C., Zhang, Y., Jiang, J.F., Liu, J., and Liu, C.H., Transcriptome analysis reveal the putative genes involved in light-induced anthocyanin accumulation in grape ‘Red Globe’ (V. vinifera L.), Gene, 2020, vol. 728, p. 144284. https://doi.org/10.1016/j.gene.2019.144284

    Article  CAS  PubMed  Google Scholar 

  16. Li, Y.Y., Mao, K., Zhao, C., Zhao, X.Y., Zhang, H.L., Shu, H.R., and Hao, Y.J., MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple, Plant Physiol., 2012, vol. 160, p. 1011. https://doi.org/10.1104/pp.112.199703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, H.N., Li, W.C., Wang, H.C., Shi, S.Y., Shu, B., Liu, L.Q., Wei, Y.Z., and Xie, J.H., Transcriptome profiling of light-regulated anthocyanin biosynthesis in the pericarp of litchi, Front. Plant Sci., 2016, vol. 7, p. 963. https://doi.org/10.3389/fpls.2016.00963

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yamagishi, M., A novel R2R3-MYB transcription factor regulates light-mediated floral and vegetative anthocyanin pigmentation patterns in Lilium regale, Mol. Breed., 2016, vol. 36, p. 3. https://doi.org/10.1007/s11032-015-0426-y

    Article  CAS  Google Scholar 

  19. Lipphardt, S., Brettschneider, R., Kreuzaler, F., Schell, J., and Dangl, J.L., UV-inducible transient expression in parsley protoplasts identifies regulatory cis-elements of a chimeric Antirrhinum majus chalcone synthase gene, EMBO J., 1988, vol. 7, p. 4027. https://doi.org/10.1002/j.1460-2075.1988.tb03296.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Y.S., Xu, Y.J., Gao, L.P., Yu, O., Wang, X.Z., He, X.J., Jiang, X.L., Liu, Y.J., and Xia, T., Functional analysis of flavonoid 3’,5’-hydroxylase from tea plant (Camellia sinensis): critical role in the accumulation of catechins, BMC Plant Biol., 2014, vol. 14, p. 347. https://doi.org/10.1186/s12870-014-0347-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fu, Z.Z., Shang, H.Q., Jiang, H., Gao, J., Dong, X.Y., Wang, H.J., Yi, Y.M., Wang, L.M., Zhang, J., Shu, Q.Y., Chao Y.C., Xu, M.L., Wang, R., Wang, L.S., and Zhang, H.C., Systematic identification of the light-quality responding anthocyanin synthesis-related transcripts in petunia petals, Hortic. Plant J., 2020, vol. 6, p. 428. https://doi.org/10.1016/j.hpj.2020.11.006

    Article  Google Scholar 

  22. Ma, Z., Li, W., Mao, J., Li, W., Zuo, C.W., Zhao, X., Dawuda, M.M., Shi, X.Y., and Chen, B.H., Synthesis of light-inducible and light-independent anthocyanins regulated by specific genes in grape ‘Marselan’ (V. vinifera L.), Peer J., 2019, vol. 7, p. 6521. https://doi.org/10.7717/peerj.6521

    Article  CAS  Google Scholar 

  23. Daniela, R., Espley, R.V., Henry-Kirk, R.A., Andreotti, C., Ziosi, V., Hellens, R.P., Costa, G., and Allan, A.C., Transcriptional regulation of flavonoid biosynthesis in nectarine (prunus persica) by a set of R2R3 MYB transcription factors, BMC Plant Biol., 2013, vol. 13, p. 68. https://doi.org/10.1186/1471-2229-13-68

    Article  CAS  Google Scholar 

  24. Bai, S.L., Tao, R.Y., Tang, Y.X., Yin, L., Ma, Y.J., Ni, J.B., Yan, X.H., Yang, Q.S., Wu, Z.Y., Zeng, Y.L., and Teng, Y.W., BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear, Plant Biotechnol. J., 2019, vol. 17, p. 1985. https://doi.org/10.1111/pbi.13114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, L.Z., Li, S.H., Ge, H.Y., Shi, S.L., Li, D.L., Liu, Y., and Chen, H.Y., A light-responsive transcription factor SmMYB35 enhances anthocyanin biosynthesis in eggplant (Solanum melongena L.), Planta, 2022, vol. 255, p. 12. https://doi.org/10.1007/s00425-021-03698-x

    Article  CAS  Google Scholar 

  26. Xu, W., Dubos, C., and Lepiniec, L., Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes, Trends in Plant Sci., 2015, vol. 20, p. 176. https://doi.org/10.1016/j.tplants.2014.12.001

    Article  CAS  Google Scholar 

  27. Cominelli, E., Gusmaroli, G., Allegra, D., Galbiati, M., Wade, H.K., Jenkins, G.I., and Tonelli, C., Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana, J. Plant Physiol., 2018, vol. 165, p. 886. https://doi.org/10.1016/j.jplph.2007.06.010

    Article  CAS  Google Scholar 

  28. Tao, R.Y., Yu, W.J., Gao, Y.H., Ni, J.B., Yin, L., Zhang, X., Li, H.X., Wang, D.S., Bai, S.L., and Teng, Y.W., Light-induced basic/helix-loop-helix64 enhances anthocyanin biosynthesis and undergoes CONSTITUTIVELY PHOTOMORPHOGENIC1- mediated degradation in pear, Plant Physiol., 2020, vol. 184, p. 1684. https://doi.org/10.1104/pp.20.01188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31760205) and Guangdong Basic and Applied Basic Research Foundation of Guangdong Province-Yuehui Joint Foundation (grant no. 2022A1515111095), Doctoral program of Huizhou University (2022JB021), Huizhou social science co-construction project (XJ2023000601), and the project of the Department of Education of Guangdong Province (grant no. 2018KTSCX214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Wang.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants as objects of research.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations: ANOVA—analysis of variance; ANS—anthocyanin synthase; Ant—anthocyanin; CHS—chalcone synthase; CHI—chalcone isomerase; DAF—days after flowering; DFR—dihydroflavonol 4-reductase; ELISA—enzyme-linked immunosorbent assay; Fla—flavonoids; FLS—flavonol synthase; F3'H—flavonoid 3'-hydroxylase; F3'5'H—flavonoid 3',5'-hydroxylase; PAL—phenylalanine ammonia-lyase; UFGT—flavonoid 3-O-glycosyltransferase.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X.L., Hu, J.B. & Wang, D.L. Effect of Light Intensity on Blueberry Fruit Coloration, Anthocyanin Synthesis Pathway Enzyme Activity, and Gene Expression. Russ J Plant Physiol 70, 136 (2023). https://doi.org/10.1134/S1021443723601064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723601064

Keywords:

Navigation