Skip to main content
Log in

Analysis and Characterization of MADS-box Genes from Davidia involucrata Baill. and Regulation of Flowering Time in Arabidopsis

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Davidia involucrata Baill. is a deciduous perennial tree. MADS-box genes are widely distributed in nature and play a key role in the growth and development of plants, especially in regulating the development of floral organs. In the present study, we have used transcriptomics to select 14 MADS-box genes differentially expressed in bract and leaf, followed by cloning and preliminary bioinformatics analysis. We predict that DiMADS-1 and DiMADS-2 belong to AGL and FLC respectively. Two key genes specifically expressed during Davidia involucrate flower development, DiMADS-1 and DiMADS-2, were transformed into Arabidopsis thaliana. Flowering appeared earlier in DiMADS-1 transgenic plants than in the wild type, whereas expression levels of some flowering promoters increased. DiMADS-2 transgenic plants were shorter and flowering was delayed, consistent with an increase in expression of flowering inhibitory factors and a decrease in flowering promoting factors. Subcellular localization displayed that both gene products were located in the nucleus. These results suggest that these two genes are involved in Davidia involucrata flowering time regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H.J., Angenent, G.C., and van Tunen, A.J., The petunia MADS box gene FBP11 determines ovule identity, Plant Cell, 1995, vol. 7, p. 1859.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sheen, J., Signal transduction in maize and Arabidopsis mesophyll protoplasts, Plant Physiol., 2001, vol. 127, p. 1466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vekemans, D., Viaene, T., Caris, P., and Geuten, K., Transference of function shapes organ identity in the dove tree inflorescence, New Phytol., 2012, vol. 193, p. 216.

    Article  CAS  PubMed  Google Scholar 

  4. Clough, S.J. and Bent, A.F., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant. J., 1998, vol. 16, p. 735.

    Article  CAS  PubMed  Google Scholar 

  5. Yang, H., Zhou, C., Li, G., Wang, J., Gao, P., Wang, M., Wang, R., and Zhao, Y., Reference gene and small RNA data from multiple tissues of Davidia involucrata Baill., Sci. Data, 2019, vol. 6, p. 181.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Robles, P. and Pelaz, S., Flower and fruit development in Arabidopsis thaliana, Int. J. Dev. Biol., 2005, vol. 49, p. 633.

    Article  CAS  PubMed  Google Scholar 

  7. Schranz, M.E., Quijada, P., Sung, S.B., Lukens, L., Amasino, R., and Osborn, T.C., Characterization and effects of the replicated flowering time gene FLC in Brassica rapa, Genetics, 2002, vol. 162, p. 1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Simpson, G.G., The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time, Curr. Opin. Plant. Biol., 2004, vol. 7, p. 570.

    Article  CAS  PubMed  Google Scholar 

  9. Abou-Elwafa, S.F., Buttner, B., Chia, T., Schulze-Buxloh, G., Hohmann, U., Mutasa-Gottgens, E., Jung, C., and Muller, A.E., Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris, J. Exp. Bot., 2011, vol. 62, p. 3359.

    Article  CAS  PubMed  Google Scholar 

  10. Sharma, N., Ruelens, P., D’Hauw, M., Maggen, T., Dochy, N., Torfs, S., Kaufmann, K., Rohde, A., and Geuten, K., A Flowering Locus C homolog is a vernalization-regulated repressor in Brachypodium and is cold regulated in wheat, Plant. Physiol., 2017, vol. 173, p. 1301.

    Article  CAS  PubMed  Google Scholar 

  11. Sharma, N., Geuten, K., Giri, B.S., and Varma, A., The molecular mechanism of vernalization in Arabidopsis and cereals: role of Flowering Locus C and its homologs, Physiol. Plant, 2020, vol. 170, p. 373.

    Article  CAS  PubMed  Google Scholar 

  12. Lee, J., Oh, M., Park, H., and Lee, I., SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY, Plant. J., 2008, vol. 55, p. 832.

    Article  CAS  PubMed  Google Scholar 

  13. Prunet, N., My favorite flowering image: an Arabidopsis inflorescence expressing fluorescent reporters for the APETALA3 and SUPERMAN genes, J. Exp. Bot., 2019, vol. 70, p. e6499.

    Article  CAS  PubMed  Google Scholar 

  14. Uemura, A., Yamaguchi, N., Xu, Y., Wee, W., Ichihashi, Y., Suzuki, T., Shibata, A., Shirasu, K., and Ito, T., Regulation of floral meristem activity through the interaction of AGAMOUS, SUPERMAN, and CLAVATA3 in Arabidopsis, Plant. Reprod., 2018, vol. 31, p. 89.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, Z.S., Liu, X.F., Wang, D.H., Chen, R., Zhang, X.L., Xu, Z.H., and Bai, S.N., Transcription factor OsTGA10 is a target of the MADS protein OsMADS8 and is required for tapetum development, Plant Physiol., 2018, vol. 176, p. 819.

    Article  CAS  PubMed  Google Scholar 

  16. Chandler, J.W., Founder cell specification, Trends Plant. Sci., 2011, vol. 16, p. 607.

    Article  CAS  PubMed  Google Scholar 

  17. Amasino, R.M., Vernalization and flowering time, Curr. Opin. Biotechnol., 2005, vol. 16, p. 154.

    Article  CAS  PubMed  Google Scholar 

  18. Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., Chen, L., Yu, L., Iglesias-Pedraz, J.M., Kircher, S., Schäfer, E., Fu, X., Fan, L.M., and Deng, X.W., Coordinated regulation of Arabidopsis thaliana development by light and gibberellins, Nature, 2008, vol. 451, p. 475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blázquez, M.A., Ahn, J.H., and Weigel, D., A thermosensory pathway controlling flowering time in Arabidopsis thaliana, Nat. Genet., 2003, vol. 33, p. 168.

    Article  PubMed  Google Scholar 

  20. Jung, J.H., Seo, P.J., Kang, S.K., and Park, C.M., miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions, Plant. Mol. Biol., 2011, vol. 76, p. 35.

    Article  CAS  PubMed  Google Scholar 

  21. Li, Z., Jiang, D., and He, Y., FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C mRNA production, Nat. Plants, 2018, vol. 4, p. 836.

    Article  CAS  PubMed  Google Scholar 

  22. Li, Z., Ou, Y., Zhang, Z., Li, J., and He, Y., Brassinosteroid signaling recruits histone 3 lysine-27 demethylation activity to FLOWERING LOCUS C chromatin to inhibit the floral transition in Arabidopsis, Mol. Plant., 2018, vol. 11, p. 1135.

    Article  CAS  PubMed  Google Scholar 

  23. Liu, X., Sun, Z., Dong, W., Wang, Z., and Zhang, L., Expansion and functional divergence of the SHORT VEGETATIVE PHASE (SVP) genes in eudicots, Genome Biol. Evol., 2018, vol. 10, p. 3026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dorca-Fornell, C., Gregis, V., Grandi, V., Coupland, G., Colombo, L., and Kater, M.M., The Arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems, Plant. J., 2011, vol. 67, p. 1006.

    Article  CAS  PubMed  Google Scholar 

  25. Li, G., Cao, C., Yang, H., Wang, J., Wei, W., Zhu, D., Gao, P., and Zhao, Y., Molecular cloning and potential role of DiSOC1s in flowering regulation in Davidia involucrata Baill., Plant. Physiol. Biochem., 2020, vol. 157, p. 453.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wei.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Zhu, L., Zeng, L. et al. Analysis and Characterization of MADS-box Genes from Davidia involucrata Baill. and Regulation of Flowering Time in Arabidopsis. Russ J Plant Physiol 69, 62 (2022). https://doi.org/10.1134/S1021443722040161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722040161

Keywords:

Navigation