Skip to main content
Log in

Effect of magnetic field on phase transitions in solutions and melts of flexible polymers

  • Thermodynamics
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The effect of the magnetic field on the phase diagrams of flexible-chain polymer–solvent systems is observed for the first time. Phase transitions in systems with the crystalline-phase separation (PE–o-xylene, PE–n-hexane, PE–chloroform, PE–o-dichlorobenzene, PEG–1,4-dioxane, PEG–toluene) and the amorphous demixing (PS–methyl acetate, PVA–ethanol, PDMS–butanone) are studied. The magnetic field increases the temperatures of crystallization of PE and PEG from solutions and melts but has no effect on phase transitions in PS, PVA, and PDMS solutions. The structures of polymer entities isolated from solutions and melts are studied. Under application of the magnetic field to PEG solutions, spherulites of substantially smaller sizes than those formed outside the field appear. The magnetic field increases the degree of crystallinity of PEG, but the degree of crystallinity and size of PE spherulites remain unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Maret and K. Dransfeld, in Strong and Ultrastrong Magnetic Fields and Their Applications, Ed. by F. Herlach (Springer-Verlag, Berlin; Heidelberg; New York; Tokyo, 1985), Vol. 57, p. 143.

  2. T. Kimura, Polym. J. 35 (11), 823 (2003).

    Article  CAS  Google Scholar 

  3. J. S. Moore and S. I. Stupp, Macromolecules 20 (2), 282 (1987).

    Article  CAS  Google Scholar 

  4. V. N. Kestel’man, Physical Methods of Modification of Polymer Materials (Khimiya, Moscow, 1980) [in Russian].

    Google Scholar 

  5. A. E. Mikelson and Ya. Kh. Karklin, J. Cryst. Growth 52 (2), 524 (1981).

    Article  Google Scholar 

  6. T. Kimura, M. Yoshino, T. Yamane, M. Yamato, and M. Tobita, Langmuir 20 (14), 5669 (2004).

    Article  CAS  Google Scholar 

  7. T. Kimura, M. Yamato, W. Koshimizu, M. Koike, and T. Kawai, Langmuir 16 (2), 858 (2000).

    Article  CAS  Google Scholar 

  8. A. Yamagishi, T. Takeuchi, T. Higashi, and M. Date, J. Phys. Soc. Jpn. 58 (7), 2280 (1989).

    Article  CAS  Google Scholar 

  9. T. Kawai and T. Kimura, Polymer 41, 155 (2000).

    Article  CAS  Google Scholar 

  10. H. Ezure, T. Kimura, S. Ogawa, and E. Ito, Macromolecules 30 (12), 3600 (1997).

    Article  CAS  Google Scholar 

  11. T. Kimura, T. Kawai, and Y. Sakamoto, Polym. Commun. 41 (2), 809 (2000).

    Article  CAS  Google Scholar 

  12. H. Sata, T. Kimura, S. Ogawa, M. Yamato, and E. Ito, Polymer 37 (10), 1879 (1996).

    Article  CAS  Google Scholar 

  13. H. Sata, T. Kimura, S. Ogawa, and E. Ito, Polymer 39 (25), 6325 (1998).

    Article  CAS  Google Scholar 

  14. C. Guo and L. J. Kaufman, Biomaterials 28 (6), 1105 (2007).

    Article  CAS  Google Scholar 

  15. Y. Kawamura, I. Sakurai, A. Ikegami, and S. Iwayanagi, Mol. Cryst. Liq. Cryst. 67 (1), 77 (1981).

    Article  CAS  Google Scholar 

  16. S. Kwon, B. J. Kim, H.-K. Lim, K. Kang, S. H. Yoo, J. Gong, E. Yoon, J. Lee, I. S. Choi, H. Kim, and H.-S. Lee, Nat. Commun. 6, 1 (2015).

    Google Scholar 

  17. F. Ebert and T. Thurn-Albrecht, Macromolecules 36 (23), 8685 (2003).

    Article  CAS  Google Scholar 

  18. M. Yamato and T. Kimura, Sci. Technol. Adv. Mater 7 (4), 337 (2006).

    Article  CAS  Google Scholar 

  19. N. Naga, Y. Saito, K. Noguchi, K. Takahashi, K. Watanabe, and M. Yamato, Polym. J. 48 (2), 1 (2016).

    Google Scholar 

  20. N. Naga, G. Ishikawa, K. Noguchi, K. Takahashi, K. Watanabe, and M. Yamato, Polymer 54 (2), 784 (2013).

    Article  CAS  Google Scholar 

  21. M. S. Al-Haik and M. Y. Hussaini, Mol. Simul. 32 (8), 601 (2006).

    Article  CAS  Google Scholar 

  22. L. Garrido, J. Polym. Sci., Part B: Polym. Phys. 48 (10), 1009 (2010).

    Article  CAS  Google Scholar 

  23. F. Kimura, T. Kimura, M. Tamura, A. Hirai, M. Ikuno, and F. Horii, Langmuir 21 (5), 2034 (2005).

    Article  CAS  Google Scholar 

  24. J. Sugiyama, H. Chanzy, and G. Maret, Macromolecules 25 (16), 4232 (1992).

    Article  CAS  Google Scholar 

  25. J.-F. Revol, L. Godbout, X.-M. Dong, D. G. Gray, H. Chanzy, and G. Maret, Liq. Cryst. 16 (1), 127 (1994).

    Article  CAS  Google Scholar 

  26. S. Fraden, A. J. Hurd, R. B. Meyer, M. Cahoon, and D. L. D. Caspar, J. Phys., Colloq. 46 (3), 85 (1985).

    Google Scholar 

  27. R. B. Meuer, Appl. Phys. Lett. 14 (3), 208 (1968).

    Google Scholar 

  28. P. G. de Gennes, Solid State Commun. 6 (3), 163 (1968).

    Article  Google Scholar 

  29. S. Chandrasekhar, Liquid Crystals (Cambridge Univ. Press, Cambridge, 1977).

    Google Scholar 

  30. D. B. DuPre and R. W. Duke, J. Chem. Phys. 63 (1), 143 (1975).

    Article  CAS  Google Scholar 

  31. R. W. Duke, D. B. DuPre, W. A. Hines, and E. T. Samulski, J. Am. Chem. Soc. 98 (10), 3094 (1976).

    Article  CAS  Google Scholar 

  32. E. Iizuka, Polym. J. 4 (4), 401 (1973).

    Article  CAS  Google Scholar 

  33. S. A. Vshivkov, E. V. Rusinova, N. V. Kudrevatykh, A. G. Galyas, M. S. Alekseeva, and D. K. Kuznetsov, Polym. Sci., Ser. A 48 (10), 1115 (2006).

    Article  Google Scholar 

  34. S. A. Vshivkov, E. V. Rusinova, L. I. Kutsenko, and A. G. Galyas, Polym. Sci., Ser. B 49 (7–8), 200 (2007).

    Article  Google Scholar 

  35. S. A. Vshivkov and E. V. Rusinova, Polym. Sci., Ser. A 50 (7), 725 (2008).

    Article  Google Scholar 

  36. S. A. Vshivkov and E. V. Rusinova, Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhnol. 50 (3), 10 (2007).

    CAS  Google Scholar 

  37. S. A. Vshivkov, L. V. Adamova, E. V. Rusinova, A. P. Safronov, V. E. Dreval’, and A.G. Galyas, Polym. Sci., Ser. A 49 (5), 578 (2007).

    Article  Google Scholar 

  38. S. A. Vshivkov and A. G. Galyas, Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhnol. 51 (5), 78 (2008).

    CAS  Google Scholar 

  39. S. A. Vshivkov and E. V. Rusinova, Polym. Sci., Ser. A 50 (7), 725 (2008).

    Article  Google Scholar 

  40. S. A. Vshivkov, Thermodynamics. Physical Shemistry of Aqueous Systems (In Tech, Croatia, 2011), p. 407.

    Google Scholar 

  41. S. A. Vshivkov, E. V. Rusinova, and A. G. Galyas, Polym. Sci., Ser. A 54 (11), 827 (2012).

    Article  CAS  Google Scholar 

  42. S. A. Vshivkov and A. A. Byzov, Polym. Sci., Ser. A 55 (2), 102 (2013).

    Article  CAS  Google Scholar 

  43. S. A. Vshivkov, E. V. Rusinova, and A. G. Galyas, J. Compos. Biodegrad. Polym. 2 (1), 31 (2014).

    CAS  Google Scholar 

  44. S. A. Vshivkov, E. V. Rusinova, and A. G. Galyas, Eur. Polym. J 59, 326 (2014).

    Article  CAS  Google Scholar 

  45. S. A. Vshivkov, E. V. Rusinova, and A. G. Galyas, Russ. J. Appl. Chem. 87 (8), 1140 (2014).

    Article  CAS  Google Scholar 

  46. S. A. Vshivkov and T. S. Soliman, Polym. Sci., Ser. A 58 (3), 307 (2016).

    Article  CAS  Google Scholar 

  47. S. A. Vshivkov and T. S. Soliman, Polym. Sci., Ser. A 58 (4), 499 (2016).

    Article  CAS  Google Scholar 

  48. S. A. Vshivkov, Phase Transitions of Polymer Systems in External Fields (Izd-vo Lan’, St. Petersburg, 2013) [in Russian].

    Google Scholar 

  49. Yu. P. Rodin, Mech. Compos. Mater. 27 (3), 331 (1991).

    Article  Google Scholar 

  50. T. Kimura, Mater. Trans. 44 (12), 2520 (2003).

    Article  CAS  Google Scholar 

  51. V. F. Miroshnichenko and N. I. Semenyuk, Plast. Massy, No. 10, 35 (1970).

    Google Scholar 

  52. N. N. Peschanskaya and P. N. Yakushev, Phys. Solid State 45 (6), 1185 (2003).

    Article  CAS  Google Scholar 

  53. V. V. Postnikov and N. N. Matveev, Polym. Sci., Ser. A 45 (2), 217 (2003).

    Google Scholar 

  54. S. A. Vshivkov and E. V. Rusinova, Vysokomol. Soed., Ser. B 39 (8), 1419 (1997).

    CAS  Google Scholar 

  55. A. A.Tager, Basics of the Science of Nonelectrolyte Solutions. Manual (Ural. Gos. Univ., Yekaterinburg, 1993) [in Russian].

    Google Scholar 

  56. G. Ver Strate and W. Philippoff, Polym. Lett. Ed. 12, 276 (1974).

    Article  Google Scholar 

  57. B. Wunderlich, Macromolecular Physics (Acad. Press, New York, 1973), Vol. 2.

    Google Scholar 

  58. J. Q. G. Maclaine and C. Booth, Polymer 16 (3), 191 (1975).

    Article  CAS  Google Scholar 

  59. F. Candau, C. Stracielle, and H. Benoit, Makromol. Chem. 170, 165 (1973).

    Article  CAS  Google Scholar 

  60. S. Konno, S. Saeki, N. Kuwahara, M. Nakata, and M. Kaneko, Macromolecules 8 (6), 799 (1975).

    Article  CAS  Google Scholar 

  61. A. R. Schultz and P. J. Flory, J. Am. Chem. Soc. 75 (16), 3888 (1953).

    Article  Google Scholar 

  62. G. P. Sigitova and L. A. Chizhova, Investigation of Dielectric Characteristics of Polymer Materials (Izd-vo Vladimirskogo Gos. Univ. im. A. G. i N. G. Stoletovykh, Vladimir, 2010) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Vshivkov.

Additional information

Original Russian Text © S.A. Vshivkov, I.V. Zhernov, A.L. Nadol’skii, A.S. Mizyov, 2017, published in Vysokomolekulyarnye Soedineniya, Seriya A, 2017, Vol. 59, No. 4, pp. 299–306.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vshivkov, S.A., Zhernov, I.V., Nadol’skii, A.L. et al. Effect of magnetic field on phase transitions in solutions and melts of flexible polymers. Polym. Sci. Ser. A 59, 465–472 (2017). https://doi.org/10.1134/S0965545X17040149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X17040149

Navigation