Skip to main content
Log in

From stabilizer states to SIC-POVM fiducial states

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the stabilizer formalism of quantum computation, the Gottesman–Knill theorem shows that universal fault-tolerant quantum computation requires the resource called magic (nonstabilizerness). Thus stabilizer states serve as “classical states,” and states beyond them are necessary for genuine quantum computation. Characterization, detection, and quantification of magic states are basic issues in this context. In the paradigm of quantum measurement, symmetric informationally complete positive operator valued measures (SIC-POVMs, further abbreviated as SICs) play a prominent role due to their structural symmetry and remarkable features. However, their existence in all dimensions, although strongly supported by extensive theoretical and numerical evidence, remains an elusive open problem (Zauner’s conjecture). A standard method for constructing SICs is via the orbit of the Heisenberg–Weyl group on a fiducial state, and most known SICs arise in this way. A natural question arises regarding the relation between stabilizer states and fiducial states. In this paper, we connect them by showing that they are on two extremes with respect to the \(p\)-norms of characteristic functions of quantum states. This not only reveals a simple path from stabilizer states to SIC fiducial states, showing quantitatively that they are as far away as possible from each other, but also provides a simple reformulation of Zauner’s conjecture in terms of extremals for the \(p\)-norms of characteristic functions. A convenient criterion for magic states and some interesting open problems are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Shor, “Fault-tolerant quantum computation,” in: Proceedings of the 37th Annual Symposium on Foundations of Computer Science Burlington, VT, USA, 14–16 October, 1996), IEEE Comput. Soc. Press, Washington, DC, USA (1996), pp. 56–65; arXiv: quant-ph/9605011.

    Google Scholar 

  2. J. Preskill, “Fault-tolerant quantum computation,” in: Introduction to Quantum Computation and Information (H.-K. Lo, T. Spiller, and S. Popescu, eds.), World Sci. Publ., River Edge, NJ (1998), pp. 213–269; arXiv: quant-ph/9712048.

    Chapter  Google Scholar 

  3. D. Gottesman, Stabilizer codes and quantum error correction (Ph. D. Thesis), California Institute of Technology, Pasadena, CA (2004); arXiv: quant-ph/9705052.

    Google Scholar 

  4. D. Gottesman, “The Heisenberg representation of quantum computers,” in: Group22: Proceedings of the XXII International Colloquium in Group Theoretical Methods in Physics (Hobart, July 13–17, 1998, S. P. Corney, R. Delbourgo, and P. D. Jarvis, eds.), Int. Press, Cambridge, MA (1999), pp. 32–43; arXiv: quant-ph/ 9807006.

    Google Scholar 

  5. D. Gottesman, I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature, 402, 390–393 (1999).

    Article  ADS  Google Scholar 

  6. X. Zhou, D. W. Leung, and I. L. Chuang, “Methodology for quantum logic gate construction,” Phys. Rev. A, 62, 052316, 12 pp. (2000); arXiv: quant-ph/0002039.

    Article  ADS  Google Scholar 

  7. S. Aaronson and D. Gottesman, “Improved simulation of stabilizer circuits,” Phys. Rev. A, 70, 052328, 14 pp. (2004); arXiv: quant-ph/0406196.

    Article  ADS  Google Scholar 

  8. E. Knill, “Quantum computing with realistically noisy devices,” Nature, 434, 39–44 (2005); arXiv: quant-ph/0410199.

    Article  ADS  Google Scholar 

  9. S. Bravyi and A. Kitaev, “Universal quantum computation with ideal Clifford gates and noisy ancillas,” Phys. Rev. A, 71, 022316, 14 pp. (2005); arXiv: quant-ph/0403025.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge (2010).

    MATH  Google Scholar 

  11. V. Veitch, S. A. H. Mousavian, D. Gottesman, and J. Emerson, “The resource theory of stabilizer quantum computation,” New J. Phys., 16, 013009, 32 pp. (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. D. Andersson, I. Bengtsson, K. Blanchfield, and H. B. Dang, “States that are far from being stabilizer states,” J. Phys. A: Math. Theor., 48, 345301, 19 pp. (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. M. Howard and E. Campbell, “Application of a resource theory for magic states to fault-tolerant quantum computing,” Phys. Rev. Lett., 118, 090501, 6 pp. (2017); arXiv: 1609.07488.

    Article  ADS  Google Scholar 

  14. E. Campbell and M. Howard, “Unifying gate synthesis and magic state distillation,” Phys. Rev. Lett., 118, 060501, 5 pp. (2017); arXiv: 1606.01906.

    Article  ADS  Google Scholar 

  15. M. Ahmadi, H. B. Dang, G. Gour, and B. C. Sanders, “Quantification and manipulation of magic states,” Phys. Rev. A, 97, 062332 (2018); arXiv: 1706.03828.

    Article  ADS  Google Scholar 

  16. M. Heinrich and D. Gross, “Robustness of magic and symmetries of the stabiliser polytope,” Quantum, 3, 132, 35 pp. (2019); arXiv: 1807.10296.

    Article  Google Scholar 

  17. J. R. Seddon and E. T. Campbell, “Quantifying magic for multi-qubit operations,” Proc. Roy. Soc. A, 475, 20190251, 24 pp. (2019); arXiv: 1901.03322.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. S. Bravyi, D. Browne, P. Calpin, E. Campbell, D. Gosset, and M. Howard, “Simulation of quantum circuits by low-rank stabilizer decompositions,” Quantum, 3, 181, 48 pp. (2019); arXiv: 1808.00128.

    Article  Google Scholar 

  19. X. Wang, M. M. Wilde, and Y. Su, “Efficiently computable bounds for magic state distillation,” Phys. Rev. Lett., 124, 090505, 7 pp. (2020).

    Article  ADS  MathSciNet  Google Scholar 

  20. Z.-W. Liu and A. Winter, “Many-body quantum magic,” PRX Quantum, 3, 020333, 18 pp. (2022); arXiv: 2010.13817.

    Article  Google Scholar 

  21. A. Heimendahl, F. Montealegre-Mora, F. Vallentin, and D. Gross, “Stabilizer extent is not multiplicative,” Quantum, 5, 400, 15 pp. (2021); arXiv: 2007.04363.

    Article  Google Scholar 

  22. H. Dai, S. Fu, and S. Luo, “Detecting magic states via characteristic functions,” Internat. J. Theoret. Phys., 61, 35, 18 pp. (2022).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, Princeton (1935).

    Google Scholar 

  24. G. Lüders, “Über die Zustandsänderung durch den meßprozeß,” Ann. Phys. Berlin, 443, 322–328 (1950).

    Article  ADS  MATH  Google Scholar 

  25. J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurement, Princeton Univ. Press, Princeton (1983).

    Book  Google Scholar 

  26. E. B. Davies and J. T. Lewis, “An operational approach to quantum probability,” Commun. Math. Phys., 17, 239–260 (1970).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. C. W. Helstrom, Quantum Detection and Estimation Theory, (Mathematics in Science and Engineering, Vol. 123), Academic Press, New York (1976).

    MATH  Google Scholar 

  28. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, (North-Holland Series in Statistics and Probability, Vol. 1), North-Holland, Amsterdam (1982).

    MATH  Google Scholar 

  29. K. Kraus, A. Böhm, J. D. Dollard, and W. H. Wootters (eds.), States, Effects and Operations. Fundamental Notions of Quantum Theory, (Lecture Notes in Physics, Vol. 190), Springer, Berlin (1983).

    Book  Google Scholar 

  30. P. Busch, M. Grabowski, and P. J. Lahti, Operational Quantum Physics, (Lecture Notes in Physics. New Series m: Monographs, Vol. 31), Springer, Berlin (1995).

    MATH  Google Scholar 

  31. A. Peres, Quantum Theory: Concepts and Methods, (Fundamental Theories of Physics, Vol. 57), Kluwer, Dordrecht (1993).

    MATH  Google Scholar 

  32. T. Heinosaari and M. Ziman, The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement, Cambridge Univ. Press, Cambridge (2012).

    MATH  Google Scholar 

  33. P. Busch, P. Lahti, J. P. Pellonpää, and K. Ylinen, Quantum Measurement (Theoretical and Mathematical Physics), Springer, Berlin (2016).

    Book  MATH  Google Scholar 

  34. G. Zauner, “Quantum designs: Foundations of a noncommutative design theory,” Int. J. Quantum Inform., 9, 445–507 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  35. J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, “Symmetric informationally complete quantum measurements,” J. Math. Phys., 45, 2171–2180 (2004); arXiv: quant-ph/0310075.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. M. Grassl, “On SIC-POVMs and MUBs in dimension 6,” arXiv: quant-ph/0406175.

  37. D. M. Appleby, “Symmetric informationally complete-positive operator valued measures and the extended Clifford group,” J. Math. Phys., 46, 052107, 29 pp. (2005); arXiv: quant-ph/0412001.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. S. T. Flammia, “On SIC-POVMs in prime dimensions,” J. Phys. A: Math. Theor., 39, 13483–13493 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. H. Zhu, “SIC POVMs and Clifford groups in prime dimensions,” J. Phys. A: Math. Theor., 43, 305305, 24 pp. (2010).

    Article  MathSciNet  MATH  Google Scholar 

  40. A. J. Scott and M. Grassl, “Symmetric informationally complete positive-operator-valued measures: A new computer study,” J. Math. Phys., 51, 042203, 16 pp. (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. D. M. Appleby, S. T. Flammia, and C. A. Fuchs, “The Lie algebraic significance of symmetric informationally complete measurements,” J. Math. Phys., 52, 022202, 34 pp. (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. D. M. Appleby, H. B. Dang, and C. A. Fuchs, “Symmetric informationally-complete quantum states as analogues to orthonormal bases and minimum-uncertainty states,” Entropy, 16, 1484–1492 (2014).

    Article  ADS  Google Scholar 

  43. D. M. Appleby, C. A. Fuchs, and H. Zhu, “Group theoretic, Lie algebraic and Jordan algebraic formulations of the SIC existence problem,” Quantum Inf. Comput., 15, 61–94 (2015).

    MathSciNet  Google Scholar 

  44. A. J. Scott, “SICs: Extending the list of solutions,” arXiv: 1703.03993.

  45. C. A. Fuchs, M. C. Hoang, and B. C. Stacey, “The SIC question: history and state of play,” Axioms, 6, 21, 20 pp. (2017).

    Article  Google Scholar 

  46. M. Appleby, T.-Y. Chien, S. Flammia, and S. Waldron, “Constructing exact symmetric informationally complete measurements from numerical solutions,” J. Phys. A: Math. Theor., 51, 165302, 40 pp. (2018); arXiv: 1703.05981.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. J. B. DeBrota and B. C. Stacey, “Lüders channels and the existence of symmetric-informationally-complete measurements,” Phys. Rev. A, 100, 062327, 7 pp. (2019); arXiv: 1907.10999.

    Article  ADS  Google Scholar 

  48. J. B. DeBrota, C. A. Fuchs, and B. C. Stacey, “Symmetric informationally complete measurements identify the irreducible difference between classical and quantum systems,” Phys. Rev. Res., 2, 013074, 9 pp. (2020).

    Article  Google Scholar 

  49. P. Horodecki, Ł. Rudnicki, and K. Życzkowski, “Five open problems in quantum information theory,” PRX Quantum, 3, 010101, 17 pp. (2022); arXiv: 2002.03233.

    Article  ADS  Google Scholar 

  50. Y. Liu and S. Luo, “Quantifying unsharpness of measurements via uncertainty,” Phys. Rev. A, 104, 052227, 10 pp. (2021).

    Article  ADS  MathSciNet  Google Scholar 

  51. B. C. Stacey, A First Course in the Sporadic SICs, (SpringerBriefs in Mathematical Physics, Vol. 41), Springer, Berlin (2021).

    MATH  Google Scholar 

  52. C. A. Fuchs and R. Schack, “Quantum-Bayesian coherence,” Rev. Modern Phys., 85, 1693–1715 (2013); arXiv: 1301.3274.

    Article  ADS  Google Scholar 

  53. C. A. Fuchs, “QBism, the perimeter of quantum Bayesianism,” arXiv: 1003.5209.

  54. M. Appleby, C. A. Fuchs, B. C. Stacey, and H. Zhu, “Introducing the Qplex: A novel arena for quantum theory,” Eur. Phys. J. D, 71, 197, 28 pp. (2017); arXiv: 1612.03234.

    Article  ADS  Google Scholar 

  55. I. Bengtsson, “The number behind the simplest SIC-POVM,” Found. Phys., 47, 1031–1041 (2017); arXiv: 1611.09087.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. M. Appleby, S. Flammia, G. McConnell, and J. Yard, “SICs and algebraic number theory,” Found. Phys., 47, 1042–1059 (2017); arXiv: 1701.05200.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. M. Appleby, S. Flammia, G. McConnell, and J. Yard, “Generating ray class fields of real quadratic fields via complex equiangular lines,” Acta Arith., 192, 211–233 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  58. G. S. Kopp, “SIC-POVMs and the Stark conjectures,” Int. Math. Res. Notices, 2021, 13812–13838 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  59. D. M. Appleby, “SIC-POVMS and MUBS: Geometrical relationships in prime dimension,” AIP Conf. Proc., 1101, 223–232 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. R. Beneduci, T. J. Bullock, P. Busch, C. Carmeli, T. Heinosaari, and A. Toigo, “Operational link between mutually unbiased bases and symmetric informationally complete positive operator-valued measures,” Phys. Rev. A, 88, 032312, 15 pp. (2013).

    Article  ADS  Google Scholar 

  61. D. Gross, “Hudson’s theorem for finite-dimensional quantum systems,” J. Math. Phys., 47, 122107, 25 pp. (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. E. Lukacs, Characteristic Functions, Hafner Publ., New York (1970).

    MATH  Google Scholar 

  63. W. K. Wootters, “A Wigner-function formulation of finite-state quantum mechanics,” Ann. Phys., 176, 1–21 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  64. U. Leonhardt, “Quantum-state tomography and discrete Wigner function,” Phys. Rev. Lett., 74, 4101–4105 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. A. Luis and J. Perina, “Discrete Wigner function for finite-dimensional systems,” J. Phys. A: Math. Gen., 31, 1423–1441 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. K. S. Gibbons, M. J. Hoffman, and W. K. Wootters, “Discrete phase space based on finite fields,” Phys. Rev. A, 70, 062101, 23 pp. (2004); arXiv: quant-ph/0401155.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. D. Gross, “Non-negative Wigner functions in prime dimensions,” Appl. Phys. B, 86, 367–370 (2007); arXiv: quant-ph/0702004.

    Article  ADS  Google Scholar 

  68. G. Björk, A. B. Klimov, and L. L. Sánchez-Soto, “Chapter 7. The discrete Wigner function,” Prog. Optics, 51, 469–516 (2008).

    Article  ADS  Google Scholar 

  69. C. Ferrie and J. Emerson, “Framed Hilbert space: Hanging the quasi-probability pictures of quantum theory,” New. J. Phys., 11, 063040, 34 pp. (2009).

    Article  ADS  Google Scholar 

  70. C. Ferrie, “Quasi-probability representations of quantum theory with applications to quantum information science,” Rep. Prog. Phys., 74, 116001, 24 pp. (2011); arXiv: 1010.2701.

    Article  ADS  MathSciNet  Google Scholar 

  71. H. Zhu, “Permutation symmetry determines the discrete Wigner function,” Phys. Rev. Lett., 116, 040501, 5 pp. (2016); arXiv: 1504.03773.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. J. B. DeBrota and B. C. Stacey, “Discrete Wigner functions from informationally complete quantum measurements,” Phys. Rev. A, 102, 032221, 11 pp. (2020); arXiv: 1912.07554.

    Article  ADS  MathSciNet  Google Scholar 

  73. L. R. Welch, “Lower bounds on the maximum cross correlation of signals,” IEEE Trans. Inform. Theory, 20, 397–399 (1974).

    Article  MATH  Google Scholar 

  74. J. J. Benedetto and M. Fickus, “Finite normalized tight frames,” Adv. Comput. Math., 18, 357–385 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  75. T. Strohmer and R. W. Heath, Jr., “Grassmannian frames with applications to coding and communication,” Appl. Comput. Harmon. Anal., 14, 257–275 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  76. I. Bengtsson and H. Granström, “The frame potential, on average,” Open Sys. Inf. Dyn., 16, 145–156 (2009).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are very grateful to the referee for helpful comments and suggestions.

Funding

This work was supported by the National Key R&D Program of China (grant No. 2020YFA0712700) and the National Natural Science Foundation of China (grant Nos. 11875317 and 61833010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunlong Luo.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 213, pp. 505–522 https://doi.org/10.4213/tmf10334.

Appendix

Here, we present the detailed proof of the basic properties of \(M_p(\rho)\).

Property 1 is evident from the definition by noting that any Clifford operator permutes the Heisenberg–Weyl operators via conjugation, i.e., \(VWV^\dagger\in\mathcal P_d\), for all \(V\in\mathcal C_d\), \(W\in\mathcal P_d\).

Property 2 follows from the classical Minkowski inequality.

Property 3 follows from the abstract Parseval theorem by noting that \(\bigl\{\frac{1}{\sqrt d}D_{k,l}\colon k,l\in\mathbb{Z}_d\bigr\}\) constitutes an orthonormal basis for the operator space \(L(\mathbb{C}^d)\), which implies that

$$\frac{1}d \sum_{k,l}\lambda_{k,l}^2(\rho)= \operatorname{tr} \rho^2.$$
In particular, for any pure state \(\rho=|\psi\rangle\langle \psi |\), we have \( \operatorname{tr} \rho^2=1\), which in turn implies Eq. (9).

For property 4, we first note that \(|c_{k,l}(\rho)| \le 1\), which follows from the Cauchy–Schwarz inequality as

$$|c_{k,l}(\rho)|^2=| \operatorname{tr} (D_{k,l}\rho)|^2=| \operatorname{tr} (D_{k,l}\sqrt{\rho}\sqrt{\rho}\,)|^2\le \operatorname{tr} \bigl[(D_{k,l}\sqrt{\rho}\,)^\dagger (D_{k,l}\sqrt{\rho}\,)\bigr] \operatorname{tr} (\sqrt{\rho}\sqrt{\rho}\,)=1.$$
Now because \(\lambda_{k,l}(\rho)=|c_{k,l}(\rho)|\in[0,1]\) and \(p\in[1,2)\), we have
$$ M_p(\rho)=\biggl(\,\sum_{k,l}\lambda_{k,l}^p(\rho)\biggr)^{\!1/p}\ge \biggl(\,\sum_{k,l}\lambda_{k,l}^2(\rho)\biggr)^{\!1/p}=d^{1/p},$$
(A.1)
which implies the above lower bound in inequality (10). In particular, noting orthogonality relation (3), it can be readily verified that any stabilizer state provides the lower bound because any stabilizer state is defined via Eq. (4) in which \(\mathcal A\) is a maximal Abelian subgroup of \(\mathcal P_d\) containing exactly \(d\) elements, i.e., \(|\mathcal A|=d\).

Next we show that if the lower bound in inequality (10) is attained by the pure state \(\rho=|\psi\rangle\langle\psi|\), then \(\rho\) must be a stabilizer state. In fact, suppose the lower bound in inequality (10) is attained by a pure state \(\rho\); then the inequality in (A.1) is saturated if and only if \(\lambda_{k,l}(\rho)=0\) or 1 (noting that \(0\le\lambda_{k,l}(\rho)\le 1)\). By property 3,

$$M_p(\rho)=\biggl(\,\sum_{k,l}\lambda_{k,l}^p\biggr)^{\!1/p}=d^{1/p},$$
we conclude that there are \(d\) elements among \(\lambda_{k,l}(\rho)\) (including \(\lambda_{0,0}(\rho)=1)\) that take the value 1 (we let the index set of such elements be denoted as \(L\subset\mathbb{Z}_d\times\mathbb{Z}_d\)), and all other take the value 0, that is,
$$\lambda_{k,l}(\rho)=|\langle\psi|D_{k,l}|\psi\rangle |=\begin{cases} 1,& (k,l)\in L, \\ 0,& \text{otherwise}. \end{cases}$$
For any \((k,l)\in L\), define \(A_{k,l}=\langle\psi |D_{k,l}|\psi\rangle^{-1}D_{k,l}\); then \(\langle\psi |A_{k,l}|\psi\rangle=1\), which implies that \({A_{k,l}|\psi\rangle=|\psi\rangle}\), that is, \(|\psi\rangle\) is a common eigenstate of the operators in \(\mathcal A=\{A_{k,l}\colon(k,l)\in L\}\) with the common eigenvalue 1. By Eq. (2), we conclude that \(A_{k,l}A_{s,t}=cA_{s,t}A_{k,l}\) for some constant \(c\) with \(|c|=1\). From \(A_{k,l}|\psi\rangle=A_{s,t}|\psi\rangle=|\psi\rangle\) for \((k,l),(s,t)\in L\), it follows that \(c=1\) when \((k,l),(s,t)\in L\). Consequently, \(\mathcal A\) is an Abelian subgroup of the Heisenberg–Weyl group with \(d\) elements (a maximal Abelian subgroup), and \(|\psi\rangle\) is a common eigenstate of the operators in \(\mathcal A\) with the common eigenvalue 1, and therefore \(|\psi\rangle\) is a stabilizer state.

Now, we proceed to establish the right-hand inequality in (10). By writing

$$M_p(\rho)=\biggl(\,\sum_{k,l}\lambda_{k,l}^p(\rho)\biggr)^{\!1/p}=\biggl(1+\sum_{k,l\neq 0}\lambda_{k,l}^p(\rho)\biggr)^{\!1/p}$$
and invoking the Hölder inequality for \(p\in[1,2)\), we have
$$\begin{aligned} \, \sum_{k,l\neq 0}\lambda_{k,l}^p(\rho)&\le \biggl(\,\sum_{k,l\neq 0}(\lambda_{k,l}^p(\rho))^{2/p}\biggr)^{\!p/2}\biggl(\,\sum_{k,l\neq 0}1\biggr)^{\!1-p/2}= \\ &=\biggl(\,\sum_{k,l}\lambda_{k,l}^2(\rho)-1\biggr)^{\!p/2}(d^2-1)^{1-p/2}= \\ &=(d-1)^{p/2}(d^2-1)^{1-p/2} = (d-1)(d+1)^{1-p/2}, \end{aligned}$$
which implies the upper bound in inequality (10). The upper bound can be attained by any fiducial state (assuming its existence), which can be verified as follows. Suppose that \(|f\rangle\) is a SIC fiducial state and let \(|f_{k,l}\rangle=D_{k,l}|f\rangle\); then \(|f_{0,0}\rangle=|f\rangle\), and
$$\biggl\{E_{k,l}=\frac{1}d |f_{k,l}\rangle\langle f_{k,l}|\colon k,l\in\mathbb{Z}_d\biggr\}$$
constitutes a SIC. In particular,
$$|\langle f|f_{k,l}\rangle|^2=\frac{1}{d+1},\qquad(k,l)\neq(0,0).$$
It follows that
$$\begin{aligned} \, M_p(|f\rangle\langle f|)&=\biggl(\,\sum_{k,l}| \operatorname{tr} (D_{k,l} |f\rangle\langle f|)|^p\biggr)^{\!1/p}= \biggl(1+\sum_{k,l\neq 0}|\langle f|f_{k,l}\rangle|^p\biggr)^{\!1/p}= \\ &=\biggl(1+(d^2-1)\biggr(\frac{1}{d+1}\biggr)^{\!p/2\,}\biggr)^{\!1/p}=(1+(d-1)(d+1)^{1-p/2})^{1/p}, \end{aligned}$$
which is precisely the upper bound in inequality (10).

Conversely, if the upper bound in inequality (10) is attained by the state \(\rho=|\psi\rangle\langle \psi|\), then by the equality condition of the Hölder inequality, we conclude that all \(\lambda_{k,l}(\rho)=|c_{k,l}(\rho)|=| \operatorname{tr} (D_{k,l}\rho)|\) are equal for \((k,l)\neq(0,0)\). By property 3,

$$\sum_{k,l\neq 0}\lambda_{k,l}^2(\rho)+1=d,$$
it follows that
$$(d^2-1)| \operatorname{tr} (D_{k,l}\rho)|^2=|\langle \psi|D_{k,l}|\psi\rangle|^2=d-1,\qquad(k,l)\neq (0,0)$$
which in turn implies that
$$|\langle\psi|D_{k,l}|\psi\rangle|^2=\frac{1}{d+1},\qquad (k,l)\neq (0,0).$$
Furthermore, by Eq. (2), the above equation implies that
$$|\langle\psi_{k,l}|\psi_{s,t}\rangle|^2=\frac{1}{d+1},\qquad (k,l)\neq (s,t),$$
where \(|\psi_{k,l}\rangle=D_{k,l}|\psi\rangle\). Consequently, \(|\psi\rangle\) is a fiducial state.

For property 5, noting that \(\lambda_{k,l}(\rho)\in[0,1]\) and \(p>2\), we have

$$M_p(\rho)=\biggl(\,\sum_{k,l}\lambda_{k,l}^p(\rho)\biggr)^{\!1/p}\le\biggl(\,\sum_{k,l}\lambda_{k,l}^2(\rho)\biggr)^{\!1/p}=d^{1/p},$$
which implies the upper bound in inequality (11). That this upper bound is attained if and only if \(\rho\) is a stabilizer state can be established similarly to the lower bound case in property 4.

When \(p>2\), by the (reverse) Hölder inequality, we have

$$\sum_{k,l\neq 0}\lambda_{k,l}^p(\rho)\ge \biggl(\,\sum_{k,l\neq 0}(\lambda_{k,l}^p(\rho))^{2/p}\biggr)^{\!p/2}\biggl(\,\sum_{k,l\neq 0}1\biggr)^{\!1-p/2}= (d-1)(d+1)^{1-p/2},$$
which implies the lower bound in inequality (11). That this lower bound can be attained if and only if \(\rho\) is a fiducial state follows from the same argument as in property 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Luo, S. From stabilizer states to SIC-POVM fiducial states. Theor Math Phys 213, 1747–1761 (2022). https://doi.org/10.1134/S004057792212008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057792212008X

Keywords

Navigation