Skip to main content
Log in

Quantum-Chemical Simulation of 13C NMR Chemical Shifts of Fullerene C60 Exo-Derivatives

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The 13C NMR chemical shifts of fullerene C60 exo-derivatives were calculated using quantum chemical hybrid functionals combined with Pople, Dunning correlation-consistent, and def2-TZVP split valence basis sets taking into account the solvent effect (polarizable continuum model). A relationship between theoretical and experimental 13C NMR chemical shifts (CSs) is assessed quantitatively to select a functional/basis set combination. It is found that the CAM-B3LYP/6-31G and M06L/6-31G combinations have the best convergence with experimental data in modeling the 13С NMR CSs of sp3 fullerene carbon atoms in С60 derivatives, whereas X3LYP/6-31G and CAM-B3LYP/6-31G(d) in modeling the 13С NMR CSs of their sp2 fullerene carbon atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. Hauke, Z.-F. Chen, and A. Hirsch, Polish J. Chem. 81, 973 (2007).

  2. E. E. Fileti and R. Rivelino, Chem. Phys. Lett. 467, 339 (2009).

    Article  CAS  Google Scholar 

  3. T. Liu, A. J. Misquitta, I. Abrahams, et al., Carbon 173, 891 (2021).

    Article  CAS  Google Scholar 

  4. J. Kaminský, M. Budesinský, S. Taubert, et al., Phys. Chem. Chem. Phys. 15, 9223 (2013).

    Article  PubMed  Google Scholar 

  5. G. Sun and M. Kertesz, J. Phys. Chem. A 104, 7398 (2000).

    Article  CAS  Google Scholar 

  6. G. Sun and M. Kertesz, J. Phys. Chem. A 105, 5468 (2001).

    Article  CAS  Google Scholar 

  7. G. Sun and M. Kertesz, Chem. Phys. 276, 107 (2002).

    Article  CAS  Google Scholar 

  8. A. R. Tulyabaev and L. M. Khalilov, Comput. Theor. Chem. 976, 12 (2011).

    Article  CAS  Google Scholar 

  9. A. R. Tulyabaev, I. I. Kiryanov, I. S. Samigullin, et al., Int. J. Quantum Chem. 117, 7 (2017).

    Article  CAS  Google Scholar 

  10. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09 (Gaussian Inc., Wallingford CT, 2009).

    Google Scholar 

  11. M. S. Meier, H. P. Spielmann, R. G. Bergosh, et al., J. Am. Chem. Soc. 124, 8090 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. M. S. Meier, H. P. Spielmann, R. G. Bergosh, et al., J. Org. Chem. 68, 7867 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. F. Djojo, A. Herzog, I. Lamparth, et al., Chem.-Eur. J. 2, 1537 (1996).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

All theoretical calculations were performed on a supercomputer at the Agidel shared resource center at the Ufa Federal Research Center’s Institute of Petrochemistry and Catalysis.

Funding

This work was supported by the RF Ministry of Science and Higher Education, topic no. FMRS 2022-0081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Tulyabaev.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tulyabaev, A.R., Khalilov, L.M. Quantum-Chemical Simulation of 13C NMR Chemical Shifts of Fullerene C60 Exo-Derivatives. Russ. J. Phys. Chem. 97, 1923–1928 (2023). https://doi.org/10.1134/S003602442309025X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442309025X

Keywords:

Navigation