Skip to main content
Log in

Temperature Sensing Performance of Fluorescent Carbon Quantum Dots Prepared from Loblolly Pine Processing Waste

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Carbon quantum dots (CQDs) is an ideal substitute for traditional fluorescent temperature sensing materials due to its excellent luminescence properties. However, the poor linear correlation between the fluorescence intensity and temperature leads to low-temperature sensing sensitivity. This study aims to prepare CQDs with a high linear correlation between fluorescence intensity and temperature from Loblolly pine wood processing waste by the one-pot hydrothermal method. The synthesized CQDs presents temperature-dependent blue fluorescence. At 0–60°C, the fluorescence intensity of CQDs has a good linear relationship with temperature, and a wide response range. Under this temperature response range, the fluorescence intensity series data of the CQDs obtained experimentally, and the chemical reaction rate series data calculated by the Arrhenius equation have a high degree of fit, high sensitivity. Reversible the fluorescence recovery rate is high. Under cryogenic storage conditions, the PL emission retention rate of CQDs after 60 d storage is high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Y. Zhao, X. Wang, Y. Zhang, et al., J. Alloys Compd. 817, 152691 (2020). https://doi.org/10.1016/j.jallcom.2019.152691

  2. Y. G. Jia, K. F. Chen, M. Gao, et al., Sci. China Chem. 64, 403 (2021). https://doi.org/10.1007/s11426-020-9893-6

    Article  CAS  Google Scholar 

  3. S. Arab, S. Masoum, and E. Seyed Hosseini, IEEE, Sens. J. 20, 1705 (2020). https://doi.org/10.1109/JSEN.2019.2949581

    Article  CAS  Google Scholar 

  4. R. Ren, Z. Zhang, P. Zhao, et al., J. Dispers. Sci. Technol. 40, 627 (2019). https://doi.org/10.1080/01932691.2018.1475239

    Article  CAS  Google Scholar 

  5. S. Uchiyama and C. Gota, Rev. Anal. Chem. 36, 20160021 (2017). https://doi.org/10.1515/revac-2016-0021

  6. Q. Su, X. Wei, J. Mao, and X. Yang, Colloid Surf., A 562, 86 (2019). https://doi.org/10.1016/j.colsurfa.2018.11.015

  7. X. C. Yang, Q. Li, M. Tang, et al., ACS Appl. Mater. Interface 12, 20849 (2020). https://doi.org/10.1021/acsami.0c02206

    Article  CAS  Google Scholar 

  8. A. Carattino, M. Caldarola, and M. Orrit, Nano Lett. 18, 874 (2018). https://doi.org/10.1021/acs.nanolett.7b04145

    Article  CAS  PubMed  Google Scholar 

  9. H. Zhang, W. Han, X. Cao, et al., Microchim. Acta 186, 353 (2019). https://doi.org/10.1007/s00604-019-3460-3

    Article  CAS  Google Scholar 

  10. L. Shang, F. Stockmar, N. Azadfar, and G. U. Nienhaus, Chem. Int. Ed. 52, 11154 (2013). https://doi.org/10.1002/anie.201306366

    Article  CAS  Google Scholar 

  11. A. Rakovich and T. Rakovich, J. Mater. Chem. B 6, 2690 (2018). https://doi.org/10.1039/c8tb00153g

    Article  CAS  PubMed  Google Scholar 

  12. L. Qin, G. Ma, L. Wang, and Z. Tang, Energy Chem. 57, 359 (2021). https://doi.org/10.1016/j.jechem.2020.09.003

    Article  CAS  Google Scholar 

  13. M. Yamauchi and S. Masuo, Chem.-Eur. J. 26, 7176 (2020). https://doi.org/10.1002/chem.201905807

    Article  CAS  PubMed  Google Scholar 

  14. Z. Lv, Y. Wang, J. Chen, et al., Chem. Rev. 120, 3941 (2020). https://doi.org/10.1021/acs.chemrev.9b00730

    Article  CAS  PubMed  Google Scholar 

  15. M. J. Gallagher, J. T. Buchman, T. A. Qiu, et al., Environ. Sci.-Nano 5, 1694 (2018). https://doi.org/10.1039/c8en00249e

    Article  CAS  Google Scholar 

  16. B. Gayen, S. Palchoudhury, and J. Chowdhury, J. Nanomater. 2019, 3451307 (2019). https://doi.org/10.1155/2019/3451307

  17. X. Xu, R. Ray, Y. Gu, et al., J. Am. Chem. Soc. 126, 12736 (2004). https://doi.org/10.1021/ja040082h

    Article  CAS  PubMed  Google Scholar 

  18. J. Hua, Z. Mu, P. Hua, et al., Talanta 219, 121279 (2020). https://doi.org/10.1016/j.talanta.2020.121279

  19. H. A. Akter, P. Dwivedi, W. Anderson, and M. Lamb, Agroforest Syst. 95, 241 (2021). https://doi.org/10.1007/s10457-020-00584-5

    Article  Google Scholar 

  20. J. Gu, I. Kirsch, T. Schripp, et al., Atmos. Environ. 193, 101 (2018). https://doi.org/10.1016/j.atmosenv.2018.08.064

    Article  CAS  Google Scholar 

  21. H. Qi, M. Teng, M. Liu, et al., J. Colloid Interface Sci. 539, 332 (2019). https://doi.org/10.1016/j.jcis.2018.12.047

    Article  CAS  PubMed  Google Scholar 

  22. M. Xue, M. Zou, J. Zhao, et al., J. Mater. Chem. B 3, 6783 (2015). https://doi.org/10.1039/c5tb01073j

    Article  CAS  PubMed  Google Scholar 

  23. G. Hu, L. Ge, Y. Li, et al., J. Colloid Interface Sci. 579, 96 (2020). https://doi.org/10.1016/j.jcis.2020.06.034

    Article  CAS  PubMed  Google Scholar 

  24. X. Sun, Y. Liu, N. Niu, and L. Chen, Anal. Bioanal. Chem. 411, 5519 (2019). https://doi.org/10.1007/s00216-019-01930-y

    Article  CAS  PubMed  Google Scholar 

  25. S. Tao, S. Lu, Y. Geng, S. Zhu, S. A. T. Redfern, Y. Song, T. Feng, W. Xu, and B. Yang, Angew. Chem. Int. Ed. 130, 2393 (2018). https://doi.org/10.1002/anie.201712662

    Article  CAS  Google Scholar 

  26. S. Zhao, X. Song, X. Chai, et al., J. Clean. Prod. 263, 121561 (2020). https://doi.org/10.1016/j.jclepro.2020.121561

  27. E. O. Oseghe, T. A. M. Msagati, B. B. Mamba, and A. E. Ofomaja, Ceram. Int. 45, 14379 (2019). https://doi.org/10.1016/j.ceramint.2019.04.121

    Article  CAS  Google Scholar 

  28. Y. Hu, J. Yang, J. Tian, et al., Carbon 77, 775 (2014). https://doi.org/10.1016/j.carbon.2014.05.081

    Article  CAS  Google Scholar 

  29. A. Förster, H. Culmsee, and C. Leuschner, Forest. Ecol. Manag. 479, 118575 (2021). https://doi.org/10.1016/j.foreco.2020.118575

  30. Z. Wei, G. Zeng, F. Huang, et al., J. Appl. Microbiol. Biot. 99, 7369 (2015). https://doi.org/10.1007/s00253-015-6752-5

    Article  CAS  Google Scholar 

  31. M. Si, M. Sillanpää, S. Zhuo, et al., Ind. Crop. Prod. 152, 112469 (2020). https://doi.org/10.1016/j.indcrop.2020.112469

  32. X. Gong, X. Gao, W. Du, et al., Opt. Mater. 96, 109302 (2019). https://doi.org/10.1016/j.optmat.2019.109302

  33. T. Gao, X. Wang, J. Zhao, et al., ACS Appl. Mater. Interface 12, 22002 (2020). https://doi.org/10.1021/acsami.0c02500

    Article  CAS  Google Scholar 

  34. H. Yang, Y. Long, H. Li, et al., J. Colloid Interface Sci. 516, 192 (2018). https://doi.org/10.1016/j.jcis.2018.01.054

    Article  CAS  PubMed  Google Scholar 

  35. Z. Mu, J. Hua, and Y. Yang, Spectrochim. Acta, Sect. A 224, 117444 (2020). https://doi.org/10.1016/j.saa.2019.117444

  36. M. J. Krysmann, A. Kelarakis, P. Dallas, and E. P. Giannelis, J. Am. Chem. Soc. 134, 747 (2012). https://doi.org/10.1021/ja204661r

    Article  CAS  PubMed  Google Scholar 

  37. S. Pramanik, S. Chatterjee, G. S. Kumar, and P. S. Devi, Phys. Chem. Chem. Phys. 20, 20476 (2018). https://doi.org/10.1039/c8cp02872a

    Article  CAS  PubMed  Google Scholar 

  38. D. Zhao, Z. Zhang, X. Liu, et al., Mater. Sci. Eng. C 119, 111468 (2021). https://doi.org/10.1016/j.msec.2020.111468

  39. J. Ci, Y. Tian, S. Kuga, et al., Chem.-Asian. J. 12, 2916 (2017). https://doi.org/10.1002/asia.201700880

    Article  CAS  PubMed  Google Scholar 

  40. X. L. Hao, X. H. Pan, Y. Gao, et al., J. Nanosci. Nanotechnol. 20, 2045 (2020). https://doi.org/10.1166/jnn.2020.17374

    Article  CAS  PubMed  Google Scholar 

  41. F. F. Du, G. Li, et al., Sens. Actuators, B 277, 492 (2018). https://doi.org/10.1016/j.snb.2018.09.027

    Article  CAS  Google Scholar 

  42. M. K. Kumawat, R. Srivastava, M. Thakur, and R. B. Gurung, ACS Sustain. Chem. Eng. 5, 1382 (2017). https://doi.org/10.1021/acssuschemeng.6b01893

    Article  CAS  Google Scholar 

  43. L. Zhang, S. Lyu, Q. Zhang, et al., Ind. Crop. Prod. 145, 112066 (2020). https://doi.org/10.1016/j.indcrop.2019.112066

  44. J. Masa, S. Barwe, C. Andronescu, and W. Schuhmann, Chem.-Eur. J. 25, 158 (2019). https://doi.org/10.1002/chem.201805264

    Article  CAS  PubMed  Google Scholar 

  45. C. M. Kelleher, J. A. O’Mahony, A. L. Kelly, et al., J. Food. Sci. 83, 937 (2018). https://doi.org/10.1111/1750-3841.14097

    Article  CAS  PubMed  Google Scholar 

  46. P. Geng, W. Li, X. Zhang, et al., J. Phys. D: Appl. Phys. 50, 40LT02 (2017). https://doi.org/10.1088/1361-6463/aa85ad

Download references

ACKNOWLEDGMENTS

The authors would like to thank First-Class Discipline Construction, International Innovation Highland of Forest Product Chemistry, Advanced Analysis and Testing Center of Nanjing Forestry University for supporting the work.

Funding

This research was supported by the National Natural Science Foundation of China (grant no. 32071703) and Youth Fund for Humanities and Social Sciences Research of the Ministry of Education (grant no. 19YJC760132).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changyan Xu or Li Xu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Guo, D., Tang, J. et al. Temperature Sensing Performance of Fluorescent Carbon Quantum Dots Prepared from Loblolly Pine Processing Waste. Russ. J. Phys. Chem. 96, 3070–3081 (2022). https://doi.org/10.1134/S0036024423030202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423030202

Keywords:

Navigation