Skip to main content
Log in

Electronic Transport Induced by Rotating Molecule in Molecular Devices

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

We investigated the effect of rotation of molecule on electronic transport properties in redox-based molecule devices using density functional theory and non-equilibrium Green’s function. The devices with oxidized form and reduced form exhibit a switching effect. The rotation of molecule changes the IV characteristics of the devices, and influences the switching ratio. In addition, the rotation of molecule induces a clear negative differential resistance effect. It is concluded that the change of coupling between molecule and electrodes induced by rotating molecule determines the electronic transport of the device. The results suggest a way to modulate the electronic transport by changing the spatial distribution of molecule in molecular circuite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig.7.

Similar content being viewed by others

REFERENCES

  1. C. C. Jia, A. Migliore, N. Xin, et al., Science (Washington, DC, U. S.) 552, 1443 (2016).

    Article  Google Scholar 

  2. B. A. Bian, J. J. Yang, X. X. Han, et al., Eur. Phys. J. B 91, 184 (2018).

    Article  Google Scholar 

  3. A. Aviram and M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974).

    Article  CAS  Google Scholar 

  4. P. P. Yuan, X. X. Han, J. J. Yang, et al., Phys. E (Amsterdam Neth.) 95, 32 (2018).

  5. Z. Q. Fan, W. Y. Sun, Z. H. Zhang, et al., Carbon 122, 687 (2017).

    Article  CAS  Google Scholar 

  6. X. X. Han, J. J. Yang, P. P. Yuan, and B. A. Bian, Eur. Phys. J. B 92, 92 (2019).

    Article  Google Scholar 

  7. R. A. Wassel, G. M. Credo, R. R. Fuierer, et al., J. Am. Chem. Soc. 126, 295 (2004).

    Article  CAS  Google Scholar 

  8. J. He and S. M. Lindsay, J. Am. Chem. Soc. 127, 11932 (2005).

    Article  CAS  Google Scholar 

  9. J. M. Seminario, A. G. Zacarias, and P. A. Derosa, J. Chem. A 105, 791 (2001).

    CAS  Google Scholar 

  10. C. Li, D. H. Zhang, X. L. Liu, et al., Appl. Phys. Lett. 82, 645 (2003).

    Article  CAS  Google Scholar 

  11. Y. Cui, Z. H. Zhong, D. L. Wang, et al., Nano Lett. 3, 149 (2003).

    Article  CAS  Google Scholar 

  12. L. L. Chua, J. Zaumseil, J. F. Chang, et al., Nature (London, U.K.) 434, 194 (2005).

    Article  CAS  Google Scholar 

  13. M. Feng, L. Gao, Z. T. Deng, et al., J. Am. Chem. Soc. 129, 2204 (2007).

    Article  CAS  Google Scholar 

  14. G. Y. Jiang, Y. L. Song, X. F. Guo, et al., Adv. Mater. 20, 2888 (2008).

    Article  CAS  Google Scholar 

  15. P. E. Kornilovitch, A. M. Bratkovsky, and R. S. Williams, Phys. Rev. B 66, 245413 (2002).

  16. M. Kishida, T. Kusamoto, and H. Nishihara, J. Am. Chem. Soc. 136, 4809 (2014).

    Article  CAS  Google Scholar 

  17. A. N. Pasupathy, R. C. Bialczak, J. Martinek, et al., Science (Washington, DC, U. S.) 306, 86 (2004).

    Article  CAS  Google Scholar 

  18. E. H. van Dijk, D. J. Myles, M. H. van der Veen, and J. C. Hummelen, Org. Lett. 8, 2333 (2006).

    Article  CAS  Google Scholar 

  19. J. Huang, Q. X. Li, H. Ren, et al., J. Chem. Phys. 127, 094705 (2007).

  20. B. A. Bian, Y. P. Zheng, P. P. Yuan, et al., Phys. Lett. A 381, 2748 (2017).

    Article  CAS  Google Scholar 

  21. J. J. Yang, X. X. Han, P. P. Yuan, et al., Theor. Chem. Acc. 137, 77 (2018).

    Article  Google Scholar 

  22. C. van Dyck, V. Geskin, A. J. Kronemeijer, et al., Phys. Chem. Chem. Phys. 15, 4392 (2013).

    Article  CAS  Google Scholar 

  23. J. J. Yang, X. X. Han, P. P. Yuan, B. A. Bian, and B. Liao, Theor. Chem. Acc. 137, 178 (2018).

    Article  Google Scholar 

  24. L. N. Shao, J. F. Zhao, B. Cui, et al., Chem. Phys. Lett. 678, 216 (2017).

    Article  CAS  Google Scholar 

  25. B. Gui, X. S. Meng, Y. Chen, et al., Chem. Mater. 27, 6426 (2015).

    Article  CAS  Google Scholar 

  26. J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001).

  27. M. Brbyge, J. L. Mozos, P. Ordejon, et al., Phys. Rev. B 65, 165401 (2002).

  28. J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  CAS  Google Scholar 

  29. M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).

    Article  Google Scholar 

  30. C. V. Dyck, V. Geskin, and J. Cornil, Adv. Funct. Mater. 24, 6154 (2014).

    Article  Google Scholar 

  31. J. M. Seminario, A. G. Zacarias, and J. M. Tour, J. Am. Chem. Soc. 122, 3015 (2000).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foundation Joint Fund Key Project under grant no. U1865206, National Science and Technology Major Project under grant no. 2017- VII-0012-0107, and Guangdong Province Key Area R & D Program under grant no. 2019B090909002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoan Bian.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Liao, B., Wang, G. et al. Electronic Transport Induced by Rotating Molecule in Molecular Devices. Russ. J. Phys. Chem. 96, 1044–1050 (2022). https://doi.org/10.1134/S003602442214028X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442214028X

Keywords:

Navigation