Skip to main content
Log in

MIL-100(Fe)/Diatomite Composite with Hierarchical Porous Structure for Sorption of Volatile Organic Compounds

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The synthesis of a composite material with a hierarchical porous structure based on the metal-organic framework MIL-100 and a natural silica material diatomite is proposed in the present study. The structure of the synthesized materials was characterized by a complex of physical-chemical methods (low-temperature sorption of nitrogen, XRD, TG-DSC). The hierarchical porous structure of the composite was confirmed by the low-temperature nitrogen adsorption method. The presence of MIL-100(Fe) and diatomite phases (amorphous silica and quartz) was confirmed by XRD. The composite structure is stable up to 300°C (confirmed by TG-DSC). The sorption properties of the composite were evaluated in the removal of toluene vapor. The MIL-100(Fe)/diatomite composite exhibited the high adsorption capacity for toluene (183 mg/g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. C. Y. Sun, S. X. Liu, D. D. Liang, et al., J. Am. Chem. Soc. 131, 1883 (2009).

    Article  CAS  Google Scholar 

  2. V. I. Isaeva, V. V. Chernyshev, A. A. Fomkin, et al., Microporous Mesoporous Mater. 300, 110136 (2020).

    Article  CAS  Google Scholar 

  3. A. Bavykina, N. Kolobov, I. S. Khan, et al., Chem. Rev. 120, 8468 (2020).

    Article  CAS  Google Scholar 

  4. F. Zhang, J. Shi, Y. Jin, et al., Chem. Eng. J 259, 183 (2015).

    Article  CAS  Google Scholar 

  5. Y. Fang, Z. Yang, H. Li, and X. Liu, Environ. Sci. Pollut. Res. 27, 4703 (2020).

    Article  CAS  Google Scholar 

  6. K. A. Adegoke, O. S. Agboola, J. Ogunmodede, et al., Mater. Chem. Phys. 253, 123246 (2020).

    Article  Google Scholar 

  7. H. Leclerc, A. Vimont, J. C. Lavalley, et al., Phys. Chem. Chem. Phys. 13, 11748 (2011).

    Article  CAS  Google Scholar 

  8. A. R. Kim, T. U. Yoon, E. J. Kim, et al., Chem. Eng. J. 331, 777 (2018).

    Article  CAS  Google Scholar 

  9. A. Dhakshinamoorthy, M. Alvaro, P. Horcajada, et al., ACS Catal. 2, 2060 (2012).

    Article  CAS  Google Scholar 

  10. Y. He, W. Dong, X. Li, et al., J. Colloid Interface Sci. 547, 364 (2020).

    Article  Google Scholar 

  11. M. A. Simon, E. Anggraeni, F. E. Soetaredjo, et al., Sci. Rep. 9, 1 (2019).

    Google Scholar 

  12. N. Yuan, X. Zhang, and L. Wang, Coord. Chem. Rev. 421, 213442 (2020).

    Article  CAS  Google Scholar 

  13. E. Ryan, Z. A. Pollard, Q. T. Ha, et al., MRS Commun. 9, 628 (2019).

    Article  CAS  Google Scholar 

  14. O. Y. Vodorezova, I. N. Lapin, G. V. Lyamina, and T. I. Izaak, Russ. Phys. J. 61, 1933 (2019).

    Article  CAS  Google Scholar 

  15. C. M. Wu, M. Rathi, S. P. Ahrenkiel, et al., Chem. Commun. 49, 1223 (2013).

    Article  CAS  Google Scholar 

  16. N. E. Tari, A. Tadjarodi, J. Tamnanloo, and S. Fatemi, Microporous Mesoporous Mater. 231, 154 (2016).

    Article  CAS  Google Scholar 

  17. C. Chen, B. Li, L. Zhou, et al., ACS Appl. Mater. Interfaces 9, 23060 (2017).

    Article  CAS  Google Scholar 

  18. F. Mahmoudi, M. M. Amini, and M. Sillanpää, Inorg. Chem. Commun. 118, 108032 (2020).

    Article  CAS  Google Scholar 

  19. C. E. Fowler, Y. Hoog, L. Vidal, and B. Lebeau, Chem. Phys. Lett. 398, 414 (2004).

    Article  CAS  Google Scholar 

  20. D. Liu, J. Gu, Q. Li, et al., Adv. Mater. 26, 1229 (2014).

    Article  CAS  Google Scholar 

  21. Z. Chen, H. Zhang, W. Luo, et al., BioResources 15, 265 (2020).

    Article  CAS  Google Scholar 

  22. U. T. Uthappa, G. Sriram, O. R. Arvind, et al., Appl. Surf. Sci. 528, 146974 (2020).

    Article  CAS  Google Scholar 

  23. E. V. Vyshegorodtseva, P. A. Matskan, and G. V. Mamontov, AIP Conf. Proc. 2301, 040018 (2020).

    Article  CAS  Google Scholar 

  24. Y. K. Seo, J. W. Yoon, J. S. Lee, et al., Microporous Mesoporous Mater. 157, 137 (2012).

    Article  CAS  Google Scholar 

  25. L. F. Atyaksheva, I. V. Dobryakova, I. I. Ivanova, and E. E. Knyazeva, Russ. J. Phys. Chem. A 89, 1924 (2015).

    Article  CAS  Google Scholar 

  26. Y. Luo, B. Tan, X. Liang, et al., Ind. Eng. Chem. Res. 59, 7291 (2020).

    Article  CAS  Google Scholar 

  27. P. Yuan, D. Liu, D. Y. Tan, et al., Microporous Mesoporous Mater. 170, 9 (2013).

    Article  CAS  Google Scholar 

  28. Z. Karimi and A. Morsali, J. Mater. Chem. A 1, 3047 (2013).

    Article  CAS  Google Scholar 

  29. F. H. Wei, D. Chen, Z. Liang, et al., RSC Adv. 7, 46520 (2017).

    Article  CAS  Google Scholar 

  30. S. Rostamnia and H. Alamgholiloo, Catal. Lett. 148, 2918 (2018).

    Article  CAS  Google Scholar 

  31. K. Zhou, W. Ma, Z. Zeng, et al., Chem. Eng. J. 372, 1122 (2019).

    Article  CAS  Google Scholar 

  32. H. Sui, H. Liu, P. An, et al., J. Taiwan Inst. Chem. Eng. 74, 218 (2017).

    Article  CAS  Google Scholar 

  33. F. Qu, L. Zhu, and K. Yang, J. Hazard. Mater 170, 7 (2009).

    Article  CAS  Google Scholar 

  34. Y. K. Ryu, J. W. Chang, S. Y. Jung, and C. H. Lee, J. Chem. Eng. Data 47, 363 (2002).

    Article  CAS  Google Scholar 

  35. K. Vellingiri, P. Kumar, A. Deep, and K. H. Kim, Chem. Eng. J. 307, 1116 (2017).

    Article  CAS  Google Scholar 

  36. F. J. Ma, S. X. Liu, D. D. Liang, et al., J. Solid State Chem. 184, 3034 (2011).

    Article  CAS  Google Scholar 

  37. C. Y. Huang, M. Song, Z. Y. Gu, et al., Environ. Sci. Technol. 45, 4490 (2011).

    Article  CAS  Google Scholar 

  38. C. Duan, Y. Yu, P. Yang, et al., Ind. Eng. Chem. Res. 5, 774 (2019).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

To Mrs. Evgenia V. Romanova (TSU) for STA studies.

Funding

This work was funded by RFBR and Tomsk region (project number 19-43-700008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Evdokimova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evdokimova, E.V., Matskan, P.A. & Mamontov, G.V. MIL-100(Fe)/Diatomite Composite with Hierarchical Porous Structure for Sorption of Volatile Organic Compounds. Russ. J. Phys. Chem. 96, 171–178 (2022). https://doi.org/10.1134/S0036024422010083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422010083

Keywords:

Navigation