Skip to main content
Log in

The theoretical investigation of solvent effects on the relative stability and 15N NMR shielding of antidepressant heterocyclic drug

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The density functional theory (DFT) and Tomasi’s polarized continuum model (PCM) were used for the investigation of solvent polarity and its dielectric constant effects on the relative stability and NMR shielding tensors of antidepressant mirtazapine (MIR). The obtained results indicated that the relative stability in the polar solvents is higher than that in non-polar solvents and the most stable structure was observed in the water at the B3LYP/6-311++G (d,p) level of theory. Also, natural bond orbital (NBO) interpretation demonstrated that by increase of solvent dielectric constant, negative charge on nitrogen atoms of heterocycles and resonance energy for LP(N10) → σ* and π* delocalization of the structure’s azepine ring increase and the highest values of them were observed in water. On the other hand, NMR calculations showed that with an increase in negative charge of nitrogen atoms, isotropic chemical shielding (σiso) around them increase and nitrogen of piperazine ring (N19) has the highest values of negative charge and σiso among nitrogen atoms. NMR calculations also represented that direct solvent effect on nitrogen of pyridine ring (N15) is more than other nitrogens, while its effect on N19 is less than other ones. Based on NMR data and NBO interpretation, it can be deduced that with a decrease in the negative charge on nitrogen atoms, the intramolecular effects on them decrease, while direct solvent effect increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Hartmann, Am. Fam. Phys. 59, 159 (1999).

    CAS  Google Scholar 

  2. T. de Boer, J. Clin. Psychiatry 57 (Suppl. 4), 19 (1996).

    Google Scholar 

  3. S. A. Anttila and E. V. Leinonen, CNS Drug Rev. 7, 249 (2001).

    Article  CAS  Google Scholar 

  4. T. de Boer, F. Nefkens, and A. van Helvoirt, Eur. J. Pharmacol. 253, R5 (1994).

    Article  Google Scholar 

  5. T. de Boer, G. Maura, M. Raiteri, C. de Vos, J. Wieringa, and R. Pinder, Neuropharmacol. 27, 399 (1988).

    Article  Google Scholar 

  6. K. J. Holm and A. Markham, Drugs 57, 607 (1999).

    Article  CAS  Google Scholar 

  7. G. S. Ruigt, B. Kemp, C. M. Groenhout, and H. A. Kamphuisen, Eur. J. Clin. Pharmacol. 38, 551 (1990).

    Article  CAS  Google Scholar 

  8. G. L. Stimmel, J. A. Dopheide, and S. M. Stahl, Pharmacotheraphy 17, 10 (1997).

    CAS  Google Scholar 

  9. P. Jolliet, G. Veyrac, and M. Bourin, Eur. Psychiatry 16, 503 (2001).

    Article  CAS  Google Scholar 

  10. T. Romiguieres, F. Pehourcq, M. Matoga, B. Begaud, and C. Jarry, J. Chromatogr. B 775, 163 (2002).

    Article  CAS  Google Scholar 

  11. S. Dodd, G. D. Burrows, and T. R. Norman, J. Chromatogr. B 748, 439 (2000).

    Article  CAS  Google Scholar 

  12. U. Selditz, Y. Liao, J. P. Franke, R. A. de Zeeuw, and H. Wikström, J. Chromatogr. A 803, 169 (1998).

    Article  CAS  Google Scholar 

  13. C. Kirkton and I. M. McIntyre, J. Anal. Toxicol. 30, 687 (2006).

    Article  CAS  Google Scholar 

  14. J. E. Paanakker and H. J. M. van Hal, J. Chromatogr. Biomed. Appl. 417, 203 (1987).

    Article  CAS  Google Scholar 

  15. I. Meineke, I. Kress, W. Poser, E. Rüther, and J. Brockmöller, Ther. Drug. Monit. 26, 277 (2004).

    Article  CAS  Google Scholar 

  16. N. Karasen and S. Altinöz, J. Pharm Biomed. Anal. 24, 11 (2000).

    Article  CAS  Google Scholar 

  17. P. M. Bhatt, N. V. Ravindra, R. Banerjee, and G. R. Desiraju, Chem. Commun. 8, 1073 (2005).

    Article  Google Scholar 

  18. E. Iishi and Y. Imamiya, US Patent No. 6723845 B2, EP 1225174 B1 (2007).

    Google Scholar 

  19. B. Sarma, R. Thakuria, N. K. Nath, and A. Nangia, Cryst. Eng. Commun. 13, 3232 (2011).

    Article  CAS  Google Scholar 

  20. J. Kelder, C. Funke, T. de Boer, L. Delbressine, D. Leysen, and V. Nickolson, J. Pharm. Pharmacol. 49, 403 (1997).

    Article  CAS  Google Scholar 

  21. S. G. Sagdinc and A. E. Sahinturk, J. Mol. Struct. 1021, 53 (2012).

    Article  CAS  Google Scholar 

  22. S. G. Sagdinc and A. E. Sahinturk, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 104, 222 (2013).

    Article  CAS  Google Scholar 

  23. H. Demirhan, M. Arslan, M. Zengin, and M. Kucukislamoglu, J. Spectrosc. 2013, 1 (2013).

    Article  Google Scholar 

  24. C. W. Funke, Recl. Trav. Chim. Pays-Bas 101, 437 (1982).

    Article  CAS  Google Scholar 

  25. B. Chankvetadze, G. Endresz, D. Bergenthal, and G. Blaschke, J. Chromatogr. A 717, 245 (1995).

    Article  CAS  Google Scholar 

  26. A. A. Salari, M. Talebi Tari, M. Noei, and A. Tahan, Arab. J. Chem., Available online August 27, 2013 (in press).

    Google Scholar 

  27. A. Tahan and N. Ahmadinejad, J. Struct. Chem. 55, C877 (2014).

    Article  Google Scholar 

  28. J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian, and M. J. Frisch, J. Phys. Chem. 100, 16098 (1996).

    Article  CAS  Google Scholar 

  29. E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Reinhold, NBO, Version 3.1 (1998).

    Google Scholar 

  30. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988).

    Article  CAS  Google Scholar 

  31. R. Cammi, B. Mennucci, and B. Tomasi, J. Chem. Phys. 110, 7627 (1999).

    Article  CAS  Google Scholar 

  32. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgometry, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Milliam, S. S. Iyengar, J. Jomasi, V. Barone, B. Mennucci, et al., Gaussian 03, Revision A.1 (Gaussian Inc., Pittsburgh, PA, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezoo Tahan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahan, A., Khojandi, M. & Salari, A.A. The theoretical investigation of solvent effects on the relative stability and 15N NMR shielding of antidepressant heterocyclic drug. Russ. J. Phys. Chem. 90, 130–135 (2016). https://doi.org/10.1134/S0036024416010039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416010039

Keywords

Navigation