Skip to main content
Log in

Synthesis of Boron Nitride by Reduction of Boron Oxide with Aluminum in Nitrogen

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The paper presents the results of studies of the self-propagating high temperature synthesis (SHS) of boron nitride via chemical reduction of boron oxide with aluminum in a nitrogen medium. The phase composition of the powder reaction products depending on the nitrogen pressure during the synthesis was studied by X-ray diffraction. It was found that SHS in the B2O3–Al system gives the BN–Al2O3 powder material containing 20–28 wt % hexagonal boron nitride depending on the nitrogen pressure. Microstructure examination showed that the obtained powder materials contains separate hexagonal BN particles with <3 μm size. The differences in the density and morphology of BN and Al2O3 determine the possibility of BN isolation from the obtained powder mixture by the pneumatic powder separation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. N. Perevislov, Novye Ogneupory 6, 35 (2019). https://doi.org/10.1007/s11148-019-00355-5

    Article  CAS  Google Scholar 

  2. B. Chen, Q. Bi, J. Yang, et al., Tribol. Int. 41, 1145 (2008). https://doi.org/10.1016/j.triboint.2008.02.014

    Article  CAS  Google Scholar 

  3. M. Engler, C. Lesniak, R. Damasch, et al., Ceram. Forum Int. 84, E49 (2007).

    Google Scholar 

  4. J. Eichler and C. Lesniak, J. Eur. Ceram. Soc. 28, 1105 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.09.005

    Article  CAS  Google Scholar 

  5. L. S. Sigl and K. Hunold, Iron Steelmaker 18, 31 (1991).

    CAS  Google Scholar 

  6. S. Rudolph, Aluminium Cast House Technology: Seventh Australian Asian Pacific Conference (John Wiley & Sons, 2013).

  7. S. Santosh, K. Rajkumar, and A. Gnanavelbabu, Mater. Sci. Forum. Trans. Tech. Pub. 830831, 87 (2015). https://doi.org/10.4028/www.scientific.net/MSF.830-831.87

  8. D. Jia, L. Zhou, Z. Yang, et al., J. Am. Ceram. Soc. 94, 3552 (2011). https://doi.org/10.1111/j.1551-2916.2011.04540.x

    Article  CAS  Google Scholar 

  9. K. Jia, X. Meng, and W. Wang, Processes 9, 871 (2021). https://doi.org/10.3390/pr9050871

    Article  CAS  Google Scholar 

  10. J. Bao, Electron. Mater. Lett. 12, 1 (2016). https://doi.org/10.1007/s13391-015-5308-2

    Article  CAS  Google Scholar 

  11. R. Kumar, S. Sahoo, E. Joanni, et al., Nano Res. 12, 2655 (2019). https://doi.org/10.1007/s12274-019-2467-8

    Article  CAS  Google Scholar 

  12. T. Liu, Y. Li, J. He, et al., New J. Chem. Royal Soc. Chem. 43, 3280 (2019). https://doi.org/10.1039/C8NJ05299A

    Article  CAS  Google Scholar 

  13. Y. Chao, B. Tang, J. Luo, et al., J. Colloid Interface Sci. 584, 154 (2021). https://doi.org/10.1016/j.jcis.2020.09.075

    Article  CAS  PubMed  Google Scholar 

  14. G. Zhao, A. Wang, W. He, et al., Adv. Mater. Interfaces 6, 1900062 (2019). https://doi.org/10.1002/admi.201900062

    Article  CAS  Google Scholar 

  15. M. Yoosefian, N. Etminan, MoghaniM. Zeraati, et al., Superlattices Microstruct. 98, 325 (2016). https://doi.org/10.1016/j.spmi.2016.08.049

    Article  CAS  Google Scholar 

  16. Y. He, D. Li, W. Gao, et al., Nanoscale 11, 21909 (2019). https://doi.org/10.1039/C9NR07153A

    Article  CAS  PubMed  Google Scholar 

  17. E. Chigo-Anota, A. Escobedo-Morales, H. Hermandez-Cocoletzi, et al., Phys. E: Low Dimens. Syst. Nanostruct. 74, 538 (2015). https://doi.org/10.1016/j.physe.2015.08.008

    Article  CAS  Google Scholar 

  18. I. V. Sukhorukova, I. Y. Zhitnyak, A. M. Kovalskii, et al., ACS Appl. Mater. Interfaces 7, 17217 (2015). https://doi.org/10.1021/acsami.5b04101

    Article  CAS  PubMed  Google Scholar 

  19. J. Hu, M. Yue, P. Zhang, et al., Angew. Chem. Int. 59, 6715 (2020). https://doi.org/10.1002/anie.201914819

    Article  CAS  Google Scholar 

  20. S. J. Yoon and A. Jha, J. Mater. Sci. 31, 2265 (1996). https://doi.org/10.1007/BF00356318

    Article  CAS  Google Scholar 

  21. H. Tagawa and O. Itouji, Bull. Chem. Soc. Jpn. 35, 1536 (1962). https://doi.org/10.1246/bcsj.35.1536

    Article  CAS  Google Scholar 

  22. S.-I. Hirano, T. Yogo, S. Asada, et al., J. Am. Ceram. Soc. 72, 66 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb05955.x

    Article  CAS  Google Scholar 

  23. G.-Q. Chen, X.-D. He, J.-C. Han, et al., J. Mater. Sci. Lett. 19, 81 (2000). https://doi.org/10.1023/A:1006772320587

    Article  CAS  Google Scholar 

  24. R. Haubner, M. Wilhelm, R. Weissengacher, et al., Structure and Bonding (Springer Berlin Heidelberg, Berlin, Heidelberg, 2002). https://doi.org/10.1007/3-540-45623-6_1

  25. O. Gafri, A. Grill, D. Itzhak, et al., Thin Solid Films 72, 523 (1980). https://doi.org/10.1016/0040-6090(80)90542-8

    Article  CAS  Google Scholar 

  26. N. S. Evseev, A. E. Matveev, and P. Y. Nikitin, Russ. J. Inorg. Chem. 67, 1319 (2022). https://doi.org/10.1134/S0036023622080095

    Article  CAS  Google Scholar 

  27. P. M. Bazhin, A. S. Konstantinov, A. P. Chizhikov, et al., Russ. J. Inorg. Chem. 67, 2040 (2022). https://doi.org/10.1134/S0036023622601696

    Article  CAS  Google Scholar 

  28. D. R. Safaeva, Yu. V. Titova, and D. A. Maidan, Sovr. Mater. Tekh. Tekhnol. 5, 70 (2018).

    Google Scholar 

  29. D. R. Safaeva, Yu. V. Titova, and D. A. Maidan, Sovr. Mater. Tekh. Tekhnol. 5, 164 (2019).

    Google Scholar 

  30. I. P. Borovinskaya, T. I. Ignat’eva, V. I. Vershinnikov, et al., Inorg. Mater. 39, 588 (2003).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The phase composition and microstructure of powder materials were studied using the equipment of the Tomsk Regional Center of Collective Use of the National Research Tomsk State University (grant no. 075-15-2021-693 of the Ministry of Science and Higher Education of the Russian Federation (no. 13.TsKP.21.0012)).

Funding

This study was supported by the Program of Development of the Tomsk State University (Prioritet-2030), project no. 2.4.4.22 ONG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Tkachev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachev, D.A., Ziatdinov, M.H., Zhukov, I.A. et al. Synthesis of Boron Nitride by Reduction of Boron Oxide with Aluminum in Nitrogen. Russ. J. Inorg. Chem. 68, 1399–1405 (2023). https://doi.org/10.1134/S0036023623700328

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623700328

Keywords:

Navigation